Skip to main content

Fish Monitoring and Sizing Using Computer Vision

  • Conference paper
Bioinspired Computation in Artificial Systems (IWINAC 2015)

Abstract

This paper proposes an image processing algorithm, based in a non invasive 3D optical stereo system and the use of computer vision techniques, to study fish in fish tanks or pools.

The proposed technique will allow to study biological variables of different fish species in underwater environments.

This knowledge, may be used to replace traditional techniques such as direct observation, which are impractical or affect the fish behavior, in task such as aquarium and fish farm management or fishway evaluation.

The accuracy and performance of the proposed technique has been tested, conducting different assays with living fishes, where promising results were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Leon-Santana, M., Hernandez, J.M.: Optimum management and environmental protection in the aquaculture industry. Ecological Economics 64, 849–857 (2008)

    Article  Google Scholar 

  2. Cappo, M., Harvey, E., Malcolm, H., Speare, P.: Potential of video techniques to monitor diversity, abundance and size of fish in studies of marine protected areas. In: Aquatic Protected Areas-What Works Best and How do We Know, pp. 455–464 (2003)

    Google Scholar 

  3. Brosnan, T., Sun, D.-W.: Inspection and grading of agricultural and food products by computer vision systems a review. Computers and Electronics in Agriculture 36, 193–213 (2002)

    Article  Google Scholar 

  4. Costa, C., Antonucci, F., Pallottino, F., Aguzzi, J., Sun, D.-W., Menesatti, P.: Shape Analysis of Agricultural Products: A Review of Recent Research Advances and Potential Application to Computer Vision. Food and Bioprocess Technology 4, 673–692 (2011)

    Article  Google Scholar 

  5. Armstrong, J.D., Bagley, P.M., Priede, I.G.: Photographic and acoustic tracking observations of the behavior of the grenadier Coryphaenoides (Nematonorus) armatus, the eel Synaphobranchus bathybius, and other abyssal demersal fish in the North Atlantic Ocean. Marine Biology 112, 1432–1793 (1992)

    Article  Google Scholar 

  6. Steig, T.W., Iverson, T.K.: Acoustic monitoring of salmonid density, target strength, and trajectories at two dams on the Columbia River, using a split-beam scaning system. Fisheries Research 35, 43–53 (1998)

    Article  Google Scholar 

  7. Rodriguez, A., Bermudez, M., Rabuñal, J., Puertas, J.: Fish tracking in vertical slot fishways using computer vision techniques. Journal of Hydroinformatics (2014)

    Google Scholar 

  8. Zion, B., Shklyar, A., Karplus, I.: Sorting fish by computer vision. Computers and Electronics in Agriculture 23, 175–187 (1999)

    Article  Google Scholar 

  9. Zion, B., Shklyar, A., Karplus, I.: In-vivo fish sorting by computer vision. Aquacultural Engineering 22, 165–179 (2000)

    Article  Google Scholar 

  10. Petrell, R.J., Shi, X., Ward, R.K., Naiberg, A., Savage, C.R.: Determining fish size and swimming speed in cages and tanks using simple video techniques. Aquacultural Engineering 16, 63–84 (1997)

    Article  Google Scholar 

  11. Israeli, D., Kimmel, E.: Monitoring the behavior of hypoxia-stressed Carassius auratus using computer vision. Aquacultural Engineering 15, 423–440 (1996)

    Article  Google Scholar 

  12. Ruff, B.P., Marchant, J.A., Frost, A.R.: Fish sizing and monitoring using a stereo image analysis system applied to fish farming. Aquacultural Engineering 14, 155–173 (1995)

    Article  Google Scholar 

  13. Duarte, S., Reig, L., Oca, J., Flos, R.: Computerized imaging techniques for fish tracking in behavioral studies. European Aquaculture Society (2004)

    Google Scholar 

  14. Chambah, M., Semani, D., Renouf, A., Courtellemont, P., Rizzi, A.: Underwater color constancy enhancement of automatic live fish recognition. In: IS&T Electronic Imaging (SPIE) (2004)

    Google Scholar 

  15. Morais, E.F., Campos, M.F.M., Padua, F.L.C., Carceroni, R.L.: Particle filter-based predictive tracking for robust fish count. In: Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI) (2005)

    Google Scholar 

  16. Clausen, S., Greiner, K., Andersen, O., Lie, K.-A., Schulerud, H., Kavli, T.: Automatic segmentation of overlapping fish using shape priors. In: Ersbøll, B.K., Pedersen, K.S. (eds.) SCIA 2007. LNCS, vol. 4522, pp. 11–20. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  17. Chuang, M.-C., Hwang, J.-N., Williams, K., Towler, R.: Automatic fish segmentation via double local thresholding for trawl-based underwater camera systems. In: IEEE International Conference on Image Processing (ICIP) (2011)

    Google Scholar 

  18. Spampinato, C., Chen-Burger, Y.-H., Nadarajan, G., Fisher, R.: Detecting, Tracking and Counting Fish in Low Quality Unconstrained Underwater Videos. In: Int. Conf. on Computer Vision Theory and Applications (VISAPP) (2008)

    Google Scholar 

  19. Lines, J.A., Tillett, R.D., Ross, L.G., Chan, D., Hockaday, S., McFarlane, N.J.B.: An automatic image-based system for estimating the mass of free-swimming fish. Computers and Electronics in Agriculture 31, 151–168 (2001)

    Article  Google Scholar 

  20. Frenkel, V., Kindschi, G., Zohar, Y.: Noninvasive, mass marking of fish by immersion in calcein: evaluation of fish size and ultrasound exposure on mark endurance. Aquaculture 214, 169–183 (2002)

    Article  Google Scholar 

  21. Martinez-de Dios, J., Serna, C., Ollero, A.: Computer vision and robotics techniques in fish farms. Robotica 21, 233–243 (2003)

    Article  Google Scholar 

  22. White, D.J., Svellingen, C., Strachan, N.J.C.: Automated measurement of species and length of fish by computer vision. Fisheries Research 80, 203–210 (2006)

    Article  Google Scholar 

  23. Hartley, R.I., Zisserman, A.: Multiple View Geometry. Cambridge University Press (2004)

    Google Scholar 

  24. Abad, F.H., Abad, V.H., Andreu, J.F., Vives, M.O.: Application of Projective Geometry to Synthetic Cameras. In: XIV International Conference of Graphic Engineering (2002)

    Google Scholar 

  25. Martin, N., Perez, B.A., Aguilera, D.G., Lahoz, J.G.: Applied Analysis of Camera Calibration Methods for Photometric Uses. In: VII National Conference of Topography and Cartography (2004)

    Google Scholar 

  26. Zhang, Z.: Flexible Camera Calibration By Viewing a Plane From Unknown Orientations. In: International Conference on Computer Vision (ICCV) (1999)

    Google Scholar 

  27. OPENCV: Open Source Computer Vision, http://opencv.org (Visited: February 2015)

  28. Coifman, B., Beymer, D., McLauchlan, P., Malik, J.: A real-time computer vision system for vehicle tracking and traffic surveillance. Transportation Research Part C: Emerging Technologies 6, 271–288 (1998)

    Article  Google Scholar 

  29. Horprasert, T., Harwood, D., Davis, L.S.: A statistical approach for real-time robust background subtraction and shadow detection. In: IEEE ICCV, pp. 1–19 (1999)

    Google Scholar 

  30. KaewTraKulPong, P., Bowden, R.: An improved adaptive background mixture model for real-time tracking with shadow detection. In: Video-Based Surveillance Systems, pp. 135–144. Springer (2002)

    Google Scholar 

  31. Zivkovic, Z.: Improved adaptive Gaussian mixture model for background subtraction. In: International Conference on Patern Recognition (ICPR 2004), pp. 28–31 (2004)

    Google Scholar 

  32. Godbehere, A.B., Matsukawa, A., Goldberg, K.: Visual tracking of human visitors under variable-lighting conditions for a responsive audio art installation. In: American Control Conference (ACC), pp. 4305–4312 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alvaro Rodriguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Rodriguez, A., Rico-Diaz, A.J., Rabuñal, J.R., Puertas, J., Pena, L. (2015). Fish Monitoring and Sizing Using Computer Vision. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo-Moreo, F., Adeli, H. (eds) Bioinspired Computation in Artificial Systems. IWINAC 2015. Lecture Notes in Computer Science(), vol 9108. Springer, Cham. https://doi.org/10.1007/978-3-319-18833-1_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18833-1_44

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18832-4

  • Online ISBN: 978-3-319-18833-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics