Skip to main content

Comparing ELM Against MLP for Electrical Power Prediction in Buildings

  • Conference paper
Bioinspired Computation in Artificial Systems (IWINAC 2015)

Abstract

The study of energy efficiency in buildings is an active field of research. Modelling and predicting energy related magnitudes leads to analyse electric power consumption and can achieve economical benefits. In this study, two machine learning techniques are applied to predict active power in buildings. The real data acquired corresponds to time, environmental and electrical data of 30 buildings belonging to the University of León (Spain). Firstly, we segmented buildings in terms of their energy consumption using principal component analysis. Afterwards we applied ELM and MLP methods to compare their performance. Models were studied for different variable selections. Our analysis shows that the MLP obtains the lowest error but also higher learning time than ELM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alonso, S.: Supervisión de la energía eléctrica en edificios públicos de uso docente basada en técnicas de minería de datos visual. Ph.D. thesis, Departamento de Ingeniería Eléctrica, Electrónica, de Computadores y Sistemas. Universidad de Oviedo (2012)

    Google Scholar 

  2. Bian, X., Xu, Q., Li, B., Xu, L.: Equipment fault forecasting based on a two-level hierarchical model. In: 2007 IEEE International Conference on Automation and Logistics, pp. 2095–2099 (2007)

    Google Scholar 

  3. Bishop, C.: Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag New York, Inc. (2006)

    Google Scholar 

  4. Carpinteiro, O., Alves da Silva, A., Feichas, C.: A hierarchical neural model in short-term load forecasting. In: IJCNN (6), pp. 241–248 (2000), http://doi.ieeecomputersociety.org/10.1109/IJCNN.2000.859403

  5. Ekici, B., Aksoy, U.: Prediction of building energy consumption by using artificial neural networks. Advances in Engineering Software 40(5), 356–362 (2009)

    Article  MATH  Google Scholar 

  6. Haykin, S.: Neural Networks and Learning Machines, 3rd edn. Prentice-Hall (2009)

    Google Scholar 

  7. Huang, G., Zhu, Q., Siew, C.: Extreme learning machine: Theory and applications. Neurocomputing (70), 489–501 (2006)

    Google Scholar 

  8. I.E.A. International Energy Agency: Energy Performance Certification of Buildings (2013)

    Google Scholar 

  9. Kusiak, A., Li, M., Tang, F.: Modeling and optimization of HVAC energy consumption. Applied Energy 87(10), 3092–3102 (2010)

    Article  Google Scholar 

  10. Ma, Y., Yu, J., Yang, C., Wang, L.: Study on power energy consumption model for large-scale public building. In: Proceedings of the 2nd International Workshop on Intelligent Systems and Applications, pp. 1–4 (2010)

    Google Scholar 

  11. Ministerio de Fomento, Gobierno de España: Código Técnico de la Edificación (2010), http://www.codigotecnico.org

  12. Newsham, G., Birt, B.: Building-level occupancy data to improve arima-based electricity use forecasts. In: Proceedings of the 2nd ACM Workshop on Embedded Sensing Systems for Energy-efficiency in Building, BuildSys 2010, pp. 13–18. ACM (2010)

    Google Scholar 

  13. Paliwal, M., Kumar, U.: Neural networks and statistical techniques: A review of applications. Expert Systems with Applications 36(1), 2–17 (2009)

    Article  Google Scholar 

  14. Soliman, S., Al-Kandari, A.: Electric load modeling for long-term forecasting. In: Electrical Load Forecasting, pp. 353–406. Butterworth-Heinemann, Boston (2010)

    Chapter  Google Scholar 

  15. U.S. Department of Energy: Buildings Energy Data Book (2010), http://buildingsdatabook.eren.doe.gov/DataBooks.aspx

  16. Vellido, A., Lisboa, P., Vaughan, J.: Neural networks in business: a survey of applications (1992–1998). Expert Systems with Applications 17(1), 51–70 (1999)

    Article  Google Scholar 

  17. Vergara, G., Carrasco, J., Martínez-Gómez, J., Domínguez, M., Gámez, J., Soria-Olivas, E.: Machine learning models to forecast daily power consumption profiles in buildings. Journal of Electrical Power and Energy Systems (2014) (submitted)

    Google Scholar 

  18. Willmott, C., Matsuura, K.: Advantages of the mean absolute error (mae) over the root mean square error (rmse) in assessing average model performance. Climate Research 30(1), 79 (2005)

    Article  Google Scholar 

  19. Wong, S., Wan, K., Lam, T.: Artificial neural networks for energy analysis of office buildings with daylighting. Applied Energy 87(2), 551–557 (2010)

    Article  Google Scholar 

  20. Yu, H., Wilamowski, B.: The Industrial Electronics Handbook, vol. 5. CRC (2011)

    Google Scholar 

  21. Zhao, H., Magoulès, F.: Parallel support vector machines applied to the prediction of multiple buildings energy consumption. Journal of Algorithms & Computational Technology 4(2), 231–249 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonzalo Vergara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Vergara, G., Cózar, J., Romero-González, C., Gámez, J.A., Soria-Olivas, E. (2015). Comparing ELM Against MLP for Electrical Power Prediction in Buildings. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo-Moreo, F., Adeli, H. (eds) Bioinspired Computation in Artificial Systems. IWINAC 2015. Lecture Notes in Computer Science(), vol 9108. Springer, Cham. https://doi.org/10.1007/978-3-319-18833-1_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18833-1_43

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18832-4

  • Online ISBN: 978-3-319-18833-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics