Skip to main content

Artificial Metaplasticity for Deep Learning: Application to WBCD Breast Cancer Database Classification

  • Conference paper
Bioinspired Computation in Artificial Systems (IWINAC 2015)

Abstract

Deep Learning is a new area of Machine Learning research that deals with learning different levels of representation and abstraction in order to move Machine Learning closer to Artificial Intelligence. Artificial Metaplasticity are Artificial Learning Algorithms based on modelling higher level properties of biological plasticity: the plasticity of plasticity itself, so called Biological Metaplasticity. Artificial Metaplasticity aims to obtain general improvements in Machine Learning based on the experts generally accepted hypothesis that the Metaplasticity of neurons in Biological Brains is of high relevance in Biological Learning. This paper presents and discuss the results of applying different Artificial Metaplasticity implementations in Multilayer Perceptrons at artificial neuron learning level. To illustrate their potential, a relevant application that is the objective of state-of-the-art research has been chosen: the diagnosis of breast cancer data from the Wisconsin Breast Cancer Database. It then concludes that Artificial Metaplasticity also may play a high relevant role in Deep Learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abraham, W.C.: Activity-dependent regulation of synaptic plasticity ( metaplasticity) in the hippocampus. In: The Hippocampus: Functions and Clinical Relevance, pp. 15ā€“26. Elsevier, Amsterdam (1996)

    Google ScholarĀ 

  2. Andina, D., Ropero-Pelaez, J.: On the biological plausibility of artificial metaplasticity learning algorithm. Neurocomputing (2012), http://dx.doi.org/10.1016/j.neucom.2012.09.028

  3. Andina, D., Alvarez-Vellisco, A., Jevtic, A., Fombellida, J.: Artificial metaplasticity can improve artificial neural network learning. Intelligent Automation and Soft Computing; Special Issue in Signal Processing and Soft ComputingĀ 15(4), 681ā€“694 (2009)

    Google ScholarĀ 

  4. Andina, D., Pham, D.: Computational Intelligence for Engineering and Manufacturing. Springer, The Nederlands (2007)

    Google ScholarĀ 

  5. Benchaib, Y., Marcano-CedeƱo, A., Torres-Alegre, S., Andina, D.: Application of Artificial Metaplasticity Neural Networks to Cardiac Arrhythmias Classification. In: FerrĆ”ndez Vicente, J.M., Ɓlvarez SĆ”nchez, J.R., de la Paz LĆ³pez, F., Toledo Moreo, F. J. (eds.) IWINAC 2013, Part I. LNCS, vol.Ā 7930, pp. 181ā€“190. Springer, Heidelberg (2013)

    ChapterĀ  Google ScholarĀ 

  6. Leung, H., Haykin, S.: The complex backpropagation algorithm. IEEE Transactions on Signal ProcessingĀ 39(9), 2101ā€“2104 (1991)

    ArticleĀ  Google ScholarĀ 

  7. Marcano-CedeƱo, A., Quintanilla-Dominguez, J., Andina, D.: Breast cancer classification applying artificial metaplasticity algorithm. NeurocomputingĀ 74(8), 1243ā€“1250 (2011)

    ArticleĀ  Google ScholarĀ 

  8. Ropero-Pelaez, J., Andina, D.: Do biological synapses perform probabilistic computations? Neurocomputing (2012), http://dx.doi.org/10.1016/j.neucom.2012.08.042

  9. Kinto, E.A., Del Moral Hernandez, E., Marcano, A., Ropero PelĆ”ez, J.: A preliminary neural model for movement direction recognition based on biologically plausible plasticity rules. In: Mira, J., Ɓlvarez, J.R. (eds.) IWINAC 2007. LNCS, vol.Ā 4528, pp. 628ā€“636. Springer, Heidelberg (2007)

    ChapterĀ  Google ScholarĀ 

  10. http://archive.ics.uci.edu/ml/datasets.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Fombellida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Fombellida, J., Torres-Alegre, S., PiƱuela-Izquierdo, J.A., Andina, D. (2015). Artificial Metaplasticity for Deep Learning: Application to WBCD Breast Cancer Database Classification. In: FerrĆ”ndez Vicente, J., Ɓlvarez-SĆ”nchez, J., de la Paz LĆ³pez, F., Toledo-Moreo, F., Adeli, H. (eds) Bioinspired Computation in Artificial Systems. IWINAC 2015. Lecture Notes in Computer Science(), vol 9108. Springer, Cham. https://doi.org/10.1007/978-3-319-18833-1_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18833-1_42

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18832-4

  • Online ISBN: 978-3-319-18833-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics