Skip to main content

A Self-Organising Multi-Manifold Learning Algorithm

  • Conference paper
Bioinspired Computation in Artificial Systems (IWINAC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9108))

Abstract

This paper presents a novel self-organising multi-manifold learning algorithm to extract multiple nonlinear manifolds from data. Extracting these sub-manifolds or manifold structure in the data can facilitate the analysis of large volume of data and discover their underlying patterns and generative causes. Many real data sets exhibit multiple sub-manifold structures due to multiple variations as well as multiple modalities. The proposed learning scheme can learn to establish the intrinsic manifold structure of the data. It can be used in either unsupervised or semi-supervised learning environment where ample unlabelled data can be effectively utilized. Experimental results on both synthetic and real-world data sets demonstrate its effectiveness, efficiency and promising potentials in many big data applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Seung, H.S., Lee, D.D.: The manifold ways of perception. Science 290, 2268–2269 (2000)

    Article  Google Scholar 

  2. Weinberger, K.Q., Saul, L.K.: Unsupervised learning of image manifolds by semidefinite programming. Int. J. Computer Vision 70(1), 77–90 (2006)

    Article  Google Scholar 

  3. Huang, W., Yin, H.: On nonlinear dimensionality reduction for face recognition. Image and Vision Computing 30, 355–366 (2012)

    Article  MathSciNet  Google Scholar 

  4. Fodor, I.K.: A survey of dimension reduction techniques. Technical Report UCRL-ID-148494, Lawrence Livermore Nat Lab, Center for Applied Scientific Computing (2002)

    Google Scholar 

  5. Yin, H.: Advances in adaptive nonlinear manifolds and dimensionality reduction. Front. Electr. Electron. Eng. China 6(1), 72–85 (2011)

    Article  Google Scholar 

  6. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)

    Article  Google Scholar 

  7. Demartines, P., Herault, J.: Curvilinear component analysis: a self-organizing neural network for nonlinear mapping of data sets. IEEE Transactions on Neural Networks 8(1), 148–154 (1997)

    Article  Google Scholar 

  8. Scholkopf, B., Smola, A., Muller, K.R.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation 10(5), 1299–1319 (1998)

    Article  Google Scholar 

  9. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000)

    Article  Google Scholar 

  10. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation 15(6), 1373–1396 (2003)

    Article  MATH  Google Scholar 

  11. Weiss, Y.: Segmentation using eigenvectors: a unified view. In: Proceedings of IEEE International Conference on Computer Vision, pp. 975–982 (1999)

    Google Scholar 

  12. Yin, H.: ViSOM-A novel method for multivariate data projection and structure visualization. IEEE Transactions on Neural Networks 13(1), 237–243 (2002)

    Article  Google Scholar 

  13. Yin, H.: Data visualization and manifold mapping using the ViSOM. Neural Networks 15(8-9), 1005–1016 (2002)

    Article  Google Scholar 

  14. Yin, H.: On multidimensional scaling and the embedding of self-organizing maps. Neural Networks 21(2-3), 160–169 (2008)

    Article  Google Scholar 

  15. Goldberg, A.B.: Multi-manifold semi-supervised learning. In: Proc. 12th International Conference on Artificial Intelligence and Statistics (AISTATS), pp. 169–176 (2009)

    Google Scholar 

  16. Liu, X., Lu, H., Li, W.: Multi-manifold modeling for head pose estimation. In: Proc. IEEE International Conference on Image Processing, pp. 3277–3280 (2010)

    Google Scholar 

  17. Wang, Y., Jiang, Y., Wu, Y., Zhou, Z.-H.: Multi-manifold clustering. In: Zhang, B.-T., Orgun, M.A. (eds.) PRICAI 2010. LNCS, vol. 6230, pp. 280–291. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  18. Wang, Y., Jiang, Y., Wu, Y., Zhou, Z.-H.: Spectral clustering on multiple manifolds. IEEE Transactions on Neural Networks 22(7), 1149–1161 (2011)

    Article  Google Scholar 

  19. Tu, E., Cao, L., Yang, J., Kasabov, N.: A novel graph-based k-means for nonlinear manifold clustering and representative selection. Neurocomputing 143, 1–14 (2014)

    Article  Google Scholar 

  20. Yang, W., Sun, C., Zhang, L.: A multi-manifold discriminant analysis method for image feature extraction. Pattern Recognition 44(8), 1649–1657 (2011)

    Article  MATH  Google Scholar 

  21. Fan, M., Qiao, H., Zhang, B., Zhang, X.: Isometric Multi-manifold Learning for Feature Extraction. In: Proc. IEEE 12th International Conference on Data Mining, pp. 241–250 (2012)

    Google Scholar 

  22. Shen, B., Si, L.: Nonnegative Matrix Factorization Clustering on Multiple Manifolds. In: Proc. 24th AAAI Conference on Artificial Intelligence, pp. 575–580 (2010)

    Google Scholar 

  23. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hujun Yin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Yin, H., Zaki, S.M. (2015). A Self-Organising Multi-Manifold Learning Algorithm. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo-Moreo, F., Adeli, H. (eds) Bioinspired Computation in Artificial Systems. IWINAC 2015. Lecture Notes in Computer Science(), vol 9108. Springer, Cham. https://doi.org/10.1007/978-3-319-18833-1_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18833-1_41

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18832-4

  • Online ISBN: 978-3-319-18833-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics