Skip to main content

Neural Modeling of Hose Dynamics to Speedup Reinforcement Learning Experiments

  • Conference paper
Bioinspired Computation in Artificial Systems (IWINAC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9108))

Abstract

Two main practical problems arise when dealing with autonomous learning of the control of Linked Multi-Component Robotic Systems (L-MCRS) with Reinforcement Learning (RL): time and space consumption, due to the convergence conditions of the RL algorithm applied, i.e. Q-Learning algorithm, and the complexity of the system model. Model approximate response allows to speedup the realization of RL experiments. We have used a multivariate regression approximation model based on Artificial Neural Networks (ANN), which has achieved a 90% and 27% of time and space savings compared to the conventional Geometrically Exact Dynamic Splines (GEDS) model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Duro, R., GraƱa, M., de Lope, J.: On the potential contributions of hybrid intelligent approaches to multicomponen robotic system development. Information SciencesĀ 180(14), 2635ā€“2648 (2010)

    ArticleĀ  Google ScholarĀ 

  2. Echegoyen, Z., Villaverde, I., Moreno, R., GraƱa, M., dā€™Anjou, A.: Linked multi-component mobile robots: modeling, simulation and control. Robotics and Autonomous SystemsĀ 58(12, SI), 1292ā€“1305 (2010)

    ArticleĀ  Google ScholarĀ 

  3. Fernandez-Gauna, B., Lopez-Guede, J.M., Zulueta, E., GraƱa, M.: Learning hose transport control with q-learning. Neural Network WorldĀ 20(7), 913ā€“923 (2010)

    Google ScholarĀ 

  4. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press (1998)

    Google ScholarĀ 

  5. Fernandez-Gauna, B., Lopez-Guede, J.M., GraƱa, M.: Towards concurrent Q-learning on linked multi-component robotic systems. In: Corchado, E., Kurzyński, M., WoÅŗniak, M. (eds.) HAIS 2011, Part II. LNCS, vol.Ā 6679, pp. 463ā€“470. Springer, Heidelberg (2011)

    ChapterĀ  Google ScholarĀ 

  6. Lopez-Guede, J.M., Fernandez-Gauna, B., GraƱa, M., Zulueta, E.: Empirical study of Q-learning based elemental hose transport control. In: Corchado, E., Kurzyński, M., WoÅŗniak, M. (eds.) HAIS 2011, Part II. LNCS, vol.Ā 6679, pp. 455ā€“462. Springer, Heidelberg (2011)

    ChapterĀ  Google ScholarĀ 

  7. Lopez-Guede, J., Fernandez-Gauna, B., Graa, M., Zulueta, E.: Further results learning hose transport control with Q-learning. Journal of Physical Agents (2012) (in press)

    Google ScholarĀ 

  8. Lopez-Guede, J.M., Fernandez-Gauna, B., Graa, M., Zulueta, E.: Improving the control of single robot hose transport. Cybernetics and SystemsĀ 43(4), 261ā€“275 (2012)

    ArticleĀ  Google ScholarĀ 

  9. Lopez-Guede, J.M., GraƱa, M., Ramos-Hernanz, J.A., Oterino, F.: A neural network approximation of L-MCRS dynamics for reinforcement learning experiments. In: FerrĆ”ndez Vicente, J.M., Ɓlvarez SĆ”nchez, J.R., de la Paz LĆ³pez, F., Toledo Moreo, F. J. (eds.) IWINAC 2013, Part II. LNCS, vol.Ā 7931, pp. 317ā€“325. Springer, Heidelberg (2013)

    ChapterĀ  Google ScholarĀ 

  10. Lopez-Guede, J.M., Fernandez-Gauna, B., GraƱa, M.: State-action value modeled by elm in reinforcement learning for hose control problems. International Journal of Uncertainty Fuzziness and Knowledge-Based Systems (2013) (submitted)

    Google ScholarĀ 

  11. Lopez-Guede, J.M., Fernandez-Gauna, B., Zulueta, E.: Towards a real time simulation of linked multi-component robotic systems. In: KES, pp. 2019ā€“2027 (2012)

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Manuel Lopez-Guede .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Lopez-Guede, J.M., GraƱa, M. (2015). Neural Modeling of Hose Dynamics to Speedup Reinforcement Learning Experiments. In: FerrĆ”ndez Vicente, J., Ɓlvarez-SĆ”nchez, J., de la Paz LĆ³pez, F., Toledo-Moreo, F., Adeli, H. (eds) Bioinspired Computation in Artificial Systems. IWINAC 2015. Lecture Notes in Computer Science(), vol 9108. Springer, Cham. https://doi.org/10.1007/978-3-319-18833-1_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18833-1_33

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18832-4

  • Online ISBN: 978-3-319-18833-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics