Abstract
Two main practical problems arise when dealing with autonomous learning of the control of Linked Multi-Component Robotic Systems (L-MCRS) with Reinforcement Learning (RL): time and space consumption, due to the convergence conditions of the RL algorithm applied, i.e. Q-Learning algorithm, and the complexity of the system model. Model approximate response allows to speedup the realization of RL experiments. We have used a multivariate regression approximation model based on Artificial Neural Networks (ANN), which has achieved a 90% and 27% of time and space savings compared to the conventional Geometrically Exact Dynamic Splines (GEDS) model.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Duro, R., GraƱa, M., de Lope, J.: On the potential contributions of hybrid intelligent approaches to multicomponen robotic system development. Information SciencesĀ 180(14), 2635ā2648 (2010)
Echegoyen, Z., Villaverde, I., Moreno, R., GraƱa, M., dāAnjou, A.: Linked multi-component mobile robots: modeling, simulation and control. Robotics and Autonomous SystemsĀ 58(12, SI), 1292ā1305 (2010)
Fernandez-Gauna, B., Lopez-Guede, J.M., Zulueta, E., GraƱa, M.: Learning hose transport control with q-learning. Neural Network WorldĀ 20(7), 913ā923 (2010)
Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press (1998)
Fernandez-Gauna, B., Lopez-Guede, J.M., GraƱa, M.: Towards concurrent Q-learning on linked multi-component robotic systems. In: Corchado, E., KurzyÅski, M., WoÅŗniak, M. (eds.) HAIS 2011, Part II. LNCS, vol.Ā 6679, pp. 463ā470. Springer, Heidelberg (2011)
Lopez-Guede, J.M., Fernandez-Gauna, B., GraƱa, M., Zulueta, E.: Empirical study of Q-learning based elemental hose transport control. In: Corchado, E., KurzyÅski, M., WoÅŗniak, M. (eds.) HAIS 2011, Part II. LNCS, vol.Ā 6679, pp. 455ā462. Springer, Heidelberg (2011)
Lopez-Guede, J., Fernandez-Gauna, B., Graa, M., Zulueta, E.: Further results learning hose transport control with Q-learning. Journal of Physical Agents (2012) (in press)
Lopez-Guede, J.M., Fernandez-Gauna, B., Graa, M., Zulueta, E.: Improving the control of single robot hose transport. Cybernetics and SystemsĀ 43(4), 261ā275 (2012)
Lopez-Guede, J.M., GraƱa, M., Ramos-Hernanz, J.A., Oterino, F.: A neural network approximation of L-MCRS dynamics for reinforcement learning experiments. In: FerrĆ”ndez Vicente, J.M., Ćlvarez SĆ”nchez, J.R., de la Paz LĆ³pez, F., Toledo Moreo, F. J. (eds.) IWINAC 2013, Part II. LNCS, vol.Ā 7931, pp. 317ā325. Springer, Heidelberg (2013)
Lopez-Guede, J.M., Fernandez-Gauna, B., GraƱa, M.: State-action value modeled by elm in reinforcement learning for hose control problems. International Journal of Uncertainty Fuzziness and Knowledge-Based Systems (2013) (submitted)
Lopez-Guede, J.M., Fernandez-Gauna, B., Zulueta, E.: Towards a real time simulation of linked multi-component robotic systems. In: KES, pp. 2019ā2027 (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
Ā© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Lopez-Guede, J.M., GraƱa, M. (2015). Neural Modeling of Hose Dynamics to Speedup Reinforcement Learning Experiments. In: FerrĆ”ndez Vicente, J., Ćlvarez-SĆ”nchez, J., de la Paz LĆ³pez, F., Toledo-Moreo, F., Adeli, H. (eds) Bioinspired Computation in Artificial Systems. IWINAC 2015. Lecture Notes in Computer Science(), vol 9108. Springer, Cham. https://doi.org/10.1007/978-3-319-18833-1_33
Download citation
DOI: https://doi.org/10.1007/978-3-319-18833-1_33
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-18832-4
Online ISBN: 978-3-319-18833-1
eBook Packages: Computer ScienceComputer Science (R0)