Skip to main content

Robust Control Tuning by PSO of Aerial Robots Hose Transportation

  • Conference paper
Bioinspired Computation in Artificial Systems (IWINAC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9108))

Abstract

This work presents a method to build a robust controller for a hose transportation system performed by aerial robots. We provide the system dynamic model, equations and desired equilibrium criteria. Control is obtained through PID controllers tuned by particle swarm optimization (PSO). The control strategy is illustrated for three quadrotors carrying two sections of a hose, but the model can be easily expanded to a bigger number of quadrotors system, due to the approach modularity. Experiments demonstrate the PSO tuning method convergence, which is fast. More than one solution is possible, and control is very robust.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ang, K.H., Chong, G.C.Y., Li, Y.: Pid control system analysis, design, and technology. IEEE Trans. Control Systems Tech.Ā 13(4), 559ā€“576 (2005)

    ArticleĀ  Google ScholarĀ 

  2. PSO based PID, Control Design, forĀ the Stabilization, ofĀ a Quadrotor, Boubertakh, H., Bencharef, S., Labiod, S. Systems and control, algiers, algeria. In: Proceedings of the 3rd International Conference on WeAC.6. IEEE 4799 (October)

    Google ScholarĀ 

  3. Bowden, G.: Stretched Wire Mechanics. eConf, C04100411:038 (2004)

    Google ScholarĀ 

  4. Bresciani. Modelling, identification and control of a quadrotor helicopter. Masterā€™s thesis, Lund University, Department of Automatic Control (2008)

    Google ScholarĀ 

  5. Chan, T.-O., Lichti, D.D.: 3d catenary curve fitting for geometric calibration. ISPRS - International Archives of the Photogrammetry. Remote Sensing and Spatial Information Sciences, XXXVIII-5/W12, 259ā€“264 (2011)

    Google ScholarĀ 

  6. Denisov, G.G., Novilov, V.V., Smirnova, M.L.: The momentum of waves and their effect on the motion of lumped objects along one-dimensional elastic systems. Journal of Applied Mathematics and MechanicsĀ 76(2), 225ā€“234 (2012)

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  7. Dierks, T., Jagannathan, S.: Output feedback control of a quadrotor uav using neural networks. IEEE Transactions on Neural NetworksĀ 21(1), 50ā€“66 (2010)

    ArticleĀ  Google ScholarĀ 

  8. Ding, F., Huang, J., Wang, Y., Fukuda, T., Matsuno, T.: Adaptive sliding mode control for manipulating deformable linear object with input saturation. In: 2012 International Conference on Mechatronics and Automation (ICMA), pp. 1862ā€“1867 (August 2012)

    Google ScholarĀ 

  9. Ding, F., Huang, J., Wang, Y., Mao, L.: Vibration damping in manipulation of deformable linear objects using sliding mode control. In: 2012 31st Chinese Control Conference (CCC), pp. 4924ā€“4929 (July 2012)

    Google ScholarĀ 

  10. Duro, R.J., GraƱa, M., de Lope, J.: On the potential contributions of hybrid intelligent approaches to multicomponen robotic system development. Information SciencesĀ 180(14), 2635ā€“2648 (2010)

    ArticleĀ  Google ScholarĀ 

  11. Echegoyen, Z., Villaverde, I., Moreno, R., GraƱa, M., dā€™Anjou, A.: Linked multi-component mobile robots: Modeling, simulation and control. Robotics and Autonomous SystemsĀ 58(12), 1292ā€“1305 (2010)

    ArticleĀ  Google ScholarĀ 

  12. Estevez, J., Lopez-Guede, J.M., Grana, M.: Quasi-stationary state transportation of a hose with quadrotors. Robotics and Autonomous SystemsĀ 63, 187ā€“194 (2015)

    ArticleĀ  Google ScholarĀ 

  13. Fernandez-Gauna, B., Lopez-Guede, J.M., Zulueta, E.: Linked multicomponent robotic systems: Basic assessment of linking element dynamical effect. In: GraƱa Romay, M., Corchado, E., Garcia Sebastian, M.T. (eds.) HAIS 2010, Part I. LNCS(LNAI), vol.Ā 6076, pp. 73ā€“79. Springer, Heidelberg (2010)

    Google ScholarĀ 

  14. Hirai, S.: Energy-based modeling of deformable linear objects. In: Henrich, D., Worn, H. (eds.) Robot Manipulation of Deformable Objects, pp. 11ā€“27. Springer, London (2000)

    Google ScholarĀ 

  15. Jian Huang, Pei Di, T.Ā Fukuda, and T.Ā Matsuno. Dynamic modeling and simulation of manipulating deformable linear objects. In Mechatronics and Automation, 2008. ICMA 2008. IEEE International Conference on, pages 858ā€“863, 2008.

    Google ScholarĀ 

  16. Koszewnik, A.: The parrot UAV controlled by PID controllers. Acta Mechanica et Automatica 8(2) (January 2014)

    Google ScholarĀ 

  17. Lopez-Guede, J.M., GraƱa, M., Ramos-Hernanz, J.A., Oterino, F.: A neural network approximation of l-mcrs dynamics for reinforcement learning experiments. In: FerrĆ”ndez Vicente, J.M., Ɓlvarez SĆ”nchez, J.R., de la Paz LĆ³pez, F., Toledo Moreo, F.J. (eds.) IWINAC 2013, Part II. LNCS(LNAI), vol.Ā 7931, pp. 317ā€“325. Springer, Heidelberg (2013)

    Google ScholarĀ 

  18. Matsuno, T., Tamaki, D., Arai, F., Fukuda, T.: Manipulation of deformable linear objects using knot invariants to classify the object condition based on image sensor information. IEEE/ASME Transactions on MechatronicsĀ 11(4), 401ā€“408 (2006)

    ArticleĀ  Google ScholarĀ 

  19. Menon, M.S., Ananthasuresh, G.K., Ghosal, A.: Natural motion of one-dimensional flexible objects using minimization approaches. Mechanism and Machine TheoryĀ 67, 64ā€“76 (2013)

    ArticleĀ  Google ScholarĀ 

  20. Moll, M., Kavraki, L.E.: Path planning for deformable linear objects. IEEE Trans. Robot.Ā 22(4), 625ā€“636

    Google ScholarĀ 

  21. A Novel, Particle Swarm, Optimization PSO, Tuning Scheme, for, PMDC Motor, and Drives Controllers. Powereng 2009 lisbon, portugal. IEEE (March 2009)

    Google ScholarĀ 

  22. Saha, M., Isto, P.: Manipulation planning for deformable linear objects. IEEE Transactions on RoboticsĀ 23(6), 1141ā€“1150 (2007)

    ArticleĀ  Google ScholarĀ 

  23. Satici, A.C., Poonawala, H., Spong, M.W.: Robust optimal control of quadrotor uavs. IEEE AccessĀ 1, 79ā€“93 (2013)

    ArticleĀ  Google ScholarĀ 

  24. Thai, H.-T., Kim, S.-E.: Nonlinear static and dynamic analysis of cable structures. Finite Elements in Analysis and DesignĀ 47(3), 237ā€“246 (2011)

    ArticleĀ  Google ScholarĀ 

  25. Wakamatsu, H., Hirai, S.: Static modeling of linear object deformation based on differential geometry. The International Journal of Robotics ResearchĀ 23(3), 293ā€“311 (2004)

    ArticleĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian Estevez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Estevez, J., GraƱa, M. (2015). Robust Control Tuning by PSO of Aerial Robots Hose Transportation. In: FerrĆ”ndez Vicente, J., Ɓlvarez-SĆ”nchez, J., de la Paz LĆ³pez, F., Toledo-Moreo, F., Adeli, H. (eds) Bioinspired Computation in Artificial Systems. IWINAC 2015. Lecture Notes in Computer Science(), vol 9108. Springer, Cham. https://doi.org/10.1007/978-3-319-18833-1_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18833-1_31

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18832-4

  • Online ISBN: 978-3-319-18833-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics