Abstract
This work presents a method to build a robust controller for a hose transportation system performed by aerial robots. We provide the system dynamic model, equations and desired equilibrium criteria. Control is obtained through PID controllers tuned by particle swarm optimization (PSO). The control strategy is illustrated for three quadrotors carrying two sections of a hose, but the model can be easily expanded to a bigger number of quadrotors system, due to the approach modularity. Experiments demonstrate the PSO tuning method convergence, which is fast. More than one solution is possible, and control is very robust.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ang, K.H., Chong, G.C.Y., Li, Y.: Pid control system analysis, design, and technology. IEEE Trans. Control Systems Tech.Ā 13(4), 559ā576 (2005)
PSO based PID, Control Design, forĀ the Stabilization, ofĀ a Quadrotor, Boubertakh, H., Bencharef, S., Labiod, S. Systems and control, algiers, algeria. In: Proceedings of the 3rd International Conference on WeAC.6. IEEE 4799 (October)
Bowden, G.: Stretched Wire Mechanics. eConf, C04100411:038 (2004)
Bresciani. Modelling, identification and control of a quadrotor helicopter. Masterās thesis, Lund University, Department of Automatic Control (2008)
Chan, T.-O., Lichti, D.D.: 3d catenary curve fitting for geometric calibration. ISPRS - International Archives of the Photogrammetry. Remote Sensing and Spatial Information Sciences, XXXVIII-5/W12, 259ā264 (2011)
Denisov, G.G., Novilov, V.V., Smirnova, M.L.: The momentum of waves and their effect on the motion of lumped objects along one-dimensional elastic systems. Journal of Applied Mathematics and MechanicsĀ 76(2), 225ā234 (2012)
Dierks, T., Jagannathan, S.: Output feedback control of a quadrotor uav using neural networks. IEEE Transactions on Neural NetworksĀ 21(1), 50ā66 (2010)
Ding, F., Huang, J., Wang, Y., Fukuda, T., Matsuno, T.: Adaptive sliding mode control for manipulating deformable linear object with input saturation. In: 2012 International Conference on Mechatronics and Automation (ICMA), pp. 1862ā1867 (August 2012)
Ding, F., Huang, J., Wang, Y., Mao, L.: Vibration damping in manipulation of deformable linear objects using sliding mode control. In: 2012 31st Chinese Control Conference (CCC), pp. 4924ā4929 (July 2012)
Duro, R.J., GraƱa, M., de Lope, J.: On the potential contributions of hybrid intelligent approaches to multicomponen robotic system development. Information SciencesĀ 180(14), 2635ā2648 (2010)
Echegoyen, Z., Villaverde, I., Moreno, R., GraƱa, M., dāAnjou, A.: Linked multi-component mobile robots: Modeling, simulation and control. Robotics and Autonomous SystemsĀ 58(12), 1292ā1305 (2010)
Estevez, J., Lopez-Guede, J.M., Grana, M.: Quasi-stationary state transportation of a hose with quadrotors. Robotics and Autonomous SystemsĀ 63, 187ā194 (2015)
Fernandez-Gauna, B., Lopez-Guede, J.M., Zulueta, E.: Linked multicomponent robotic systems: Basic assessment of linking element dynamical effect. In: GraƱa Romay, M., Corchado, E., Garcia Sebastian, M.T. (eds.) HAIS 2010, Part I. LNCS(LNAI), vol.Ā 6076, pp. 73ā79. Springer, Heidelberg (2010)
Hirai, S.: Energy-based modeling of deformable linear objects. In: Henrich, D., Worn, H. (eds.) Robot Manipulation of Deformable Objects, pp. 11ā27. Springer, London (2000)
Jian Huang, Pei Di, T.Ā Fukuda, and T.Ā Matsuno. Dynamic modeling and simulation of manipulating deformable linear objects. In Mechatronics and Automation, 2008. ICMA 2008. IEEE International Conference on, pages 858ā863, 2008.
Koszewnik, A.: The parrot UAV controlled by PID controllers. Acta Mechanica et Automatica 8(2) (January 2014)
Lopez-Guede, J.M., GraƱa, M., Ramos-Hernanz, J.A., Oterino, F.: A neural network approximation of l-mcrs dynamics for reinforcement learning experiments. In: FerrĆ”ndez Vicente, J.M., Ćlvarez SĆ”nchez, J.R., de la Paz LĆ³pez, F., Toledo Moreo, F.J. (eds.) IWINAC 2013, Part II. LNCS(LNAI), vol.Ā 7931, pp. 317ā325. Springer, Heidelberg (2013)
Matsuno, T., Tamaki, D., Arai, F., Fukuda, T.: Manipulation of deformable linear objects using knot invariants to classify the object condition based on image sensor information. IEEE/ASME Transactions on MechatronicsĀ 11(4), 401ā408 (2006)
Menon, M.S., Ananthasuresh, G.K., Ghosal, A.: Natural motion of one-dimensional flexible objects using minimization approaches. Mechanism and Machine TheoryĀ 67, 64ā76 (2013)
Moll, M., Kavraki, L.E.: Path planning for deformable linear objects. IEEE Trans. Robot.Ā 22(4), 625ā636
A Novel, Particle Swarm, Optimization PSO, Tuning Scheme, for, PMDC Motor, and Drives Controllers. Powereng 2009 lisbon, portugal. IEEE (March 2009)
Saha, M., Isto, P.: Manipulation planning for deformable linear objects. IEEE Transactions on RoboticsĀ 23(6), 1141ā1150 (2007)
Satici, A.C., Poonawala, H., Spong, M.W.: Robust optimal control of quadrotor uavs. IEEE AccessĀ 1, 79ā93 (2013)
Thai, H.-T., Kim, S.-E.: Nonlinear static and dynamic analysis of cable structures. Finite Elements in Analysis and DesignĀ 47(3), 237ā246 (2011)
Wakamatsu, H., Hirai, S.: Static modeling of linear object deformation based on differential geometry. The International Journal of Robotics ResearchĀ 23(3), 293ā311 (2004)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
Ā© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Estevez, J., GraƱa, M. (2015). Robust Control Tuning by PSO of Aerial Robots Hose Transportation. In: FerrĆ”ndez Vicente, J., Ćlvarez-SĆ”nchez, J., de la Paz LĆ³pez, F., Toledo-Moreo, F., Adeli, H. (eds) Bioinspired Computation in Artificial Systems. IWINAC 2015. Lecture Notes in Computer Science(), vol 9108. Springer, Cham. https://doi.org/10.1007/978-3-319-18833-1_31
Download citation
DOI: https://doi.org/10.1007/978-3-319-18833-1_31
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-18832-4
Online ISBN: 978-3-319-18833-1
eBook Packages: Computer ScienceComputer Science (R0)