Skip to main content

Object Recognition in Noisy RGB-D Data

  • Conference paper
Bioinspired Computation in Artificial Systems (IWINAC 2015)

Abstract

The object recognition task on 3D scenes is a growing research field that faces some problems relative to the use of 3D point clouds. In this work, we focus on dealing with noisy clouds through the use of the Growing Neural Gas (GNG) network filtering algorithm. Another challenge is the selection of the right keypoints detection method, that allows to identify a model into a scene cloud. The GNG method is able to represent the input data with a desired resolution while preserving the topology of the input space. Experiments show how the introduction of the GNG method yields better recognitions results than others filtering algorithms when noise is present.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aldoma, A., Tombari, F., Di Stefano, L., Vincze, M.: A global hypotheses verification method for 3D object recognition. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part III. LNCS, vol. 7574, pp. 511–524. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  2. As’ari, M.A., Sheikh, U.U., Supriyanto, E.: 3D shape descriptor for object recognition based on Kinect-like depth image. Image and Vision Computing 32(4), 260–269 (2014)

    Article  Google Scholar 

  3. Besl, P.J., McKay, N.D.: A method for registration of 3-d shapes. IEEE Trans. on Pattern Analysis and Machine Intelligence 14(2), 239–256 (1992)

    Article  Google Scholar 

  4. Computer Vision LAB: SHOT: Unique signatures of histograms for local surface description - computer vision LAB, http://www.vision.deis.unibo.it/research/80-shot

  5. Guo, Y., Bennamoun, M., Sohel, F., Wan, J., Lu, M.: 3d object recognition in cluttered scenes with local surface features: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence PP(99), 1 (2014)

    Google Scholar 

  6. Hinterstoisser, S., Holzer, S., Cagniart, C., Ilic, S., Konolige, K., Navab, N., Lepetit, V.: Multimodal templates for real-time detection of texture-less objects in heavily cluttered scenes. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 858–865 (November 2011)

    Google Scholar 

  7. Muja, M.: FLANN - fast library for approximate nearest neighbors: FLANN - FLANN browse, http://www.cs.ubc.ca/research/flann/

  8. Pang, G., Neumann, U.: Training-based object recognition in cluttered 3d point clouds. In: 2013 International Conference on 3D Vision - 3DV 2013, pp. 87–94 (June 2013)

    Google Scholar 

  9. Radu Bogdan Rusu: Point cloud library (PCL): pcl::UniformSampling< PointInT> class template reference

    Google Scholar 

  10. Rusu, R.B., Cousins, S.: 3D is here: Point Cloud Library (PCL). In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, May 9-13 (2011)

    Google Scholar 

  11. Sipiran, I., Bustos, B.: Harris 3d: a robust extension of the harris operator for interest point detection on 3d meshes. The Visual Computer 27(11), 963–976 (2011)

    Article  Google Scholar 

  12. Tombari, F., Di Stefano, L.: Object recognition in 3d scenes with occlusions and clutter by hough voting. In: 2010 Fourth Pacific-Rim Symposium on Image and Video Technology (PSIVT), pp. 349–355 (November 2010)

    Google Scholar 

  13. Tombari, F., Gori, F., Di Stefano, L.: Evaluation of stereo algorithms for 3d object recognition. In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp. 990–997 (November 2011)

    Google Scholar 

  14. Tombari, F., Salti, S.: A combined texture-shape descriptor for enhanced 3d feature matching. In: 2011 18th IEEE International Conference on Image Processing (ICIP), pp. 809–812 (September 2011)

    Google Scholar 

  15. Tombari, F., Salti, S., Di Stefano, L.: Unique signatures of histograms for local surface description. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part III. LNCS, vol. 6313, pp. 356–369. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  16. Tombari, F., Salti, S., DiStefano, L.: Performance evaluation of 3d keypoint detectors. International Journal of Computer Vision 102(1-3), 198–220 (2013)

    Article  Google Scholar 

  17. Viejo, D., Garcia, J., Cazorla, M., Gil, D., Johnsson, M.: Using GNG to improve 3d feature extraction-application to 6dof egomotion. Neural Networks (2012)

    Google Scholar 

  18. Xu, G., Mourrain, B., Duvigneau, R., Galligo, A.: Analysis-suitable volume parameterization of multi-block computational domain in isogeometric applications. Computer-Aided Design 45(2), 395–404 (2013), solid and Physical Modeling 2012

    Google Scholar 

  19. Zhong, Y.: Intrinsic shape signatures: A shape descriptor for 3d object recognition. In: 2009 IEEE 12th International Conference on Computer Vision Workshops (ICCV Workshops), pp. 689–696 (September 2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Carlos Rangel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Rangel, J.C., Morell, V., Cazorla, M., Orts-Escolano, S., García-Rodríguez, J. (2015). Object Recognition in Noisy RGB-D Data. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo-Moreo, F., Adeli, H. (eds) Bioinspired Computation in Artificial Systems. IWINAC 2015. Lecture Notes in Computer Science(), vol 9108. Springer, Cham. https://doi.org/10.1007/978-3-319-18833-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18833-1_28

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18832-4

  • Online ISBN: 978-3-319-18833-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics