Abstract
The object recognition task on 3D scenes is a growing research field that faces some problems relative to the use of 3D point clouds. In this work, we focus on dealing with noisy clouds through the use of the Growing Neural Gas (GNG) network filtering algorithm. Another challenge is the selection of the right keypoints detection method, that allows to identify a model into a scene cloud. The GNG method is able to represent the input data with a desired resolution while preserving the topology of the input space. Experiments show how the introduction of the GNG method yields better recognitions results than others filtering algorithms when noise is present.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aldoma, A., Tombari, F., Di Stefano, L., Vincze, M.: A global hypotheses verification method for 3D object recognition. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part III. LNCS, vol. 7574, pp. 511–524. Springer, Heidelberg (2012)
As’ari, M.A., Sheikh, U.U., Supriyanto, E.: 3D shape descriptor for object recognition based on Kinect-like depth image. Image and Vision Computing 32(4), 260–269 (2014)
Besl, P.J., McKay, N.D.: A method for registration of 3-d shapes. IEEE Trans. on Pattern Analysis and Machine Intelligence 14(2), 239–256 (1992)
Computer Vision LAB: SHOT: Unique signatures of histograms for local surface description - computer vision LAB, http://www.vision.deis.unibo.it/research/80-shot
Guo, Y., Bennamoun, M., Sohel, F., Wan, J., Lu, M.: 3d object recognition in cluttered scenes with local surface features: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence PP(99), 1 (2014)
Hinterstoisser, S., Holzer, S., Cagniart, C., Ilic, S., Konolige, K., Navab, N., Lepetit, V.: Multimodal templates for real-time detection of texture-less objects in heavily cluttered scenes. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 858–865 (November 2011)
Muja, M.: FLANN - fast library for approximate nearest neighbors: FLANN - FLANN browse, http://www.cs.ubc.ca/research/flann/
Pang, G., Neumann, U.: Training-based object recognition in cluttered 3d point clouds. In: 2013 International Conference on 3D Vision - 3DV 2013, pp. 87–94 (June 2013)
Radu Bogdan Rusu: Point cloud library (PCL): pcl::UniformSampling< PointInT> class template reference
Rusu, R.B., Cousins, S.: 3D is here: Point Cloud Library (PCL). In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, May 9-13 (2011)
Sipiran, I., Bustos, B.: Harris 3d: a robust extension of the harris operator for interest point detection on 3d meshes. The Visual Computer 27(11), 963–976 (2011)
Tombari, F., Di Stefano, L.: Object recognition in 3d scenes with occlusions and clutter by hough voting. In: 2010 Fourth Pacific-Rim Symposium on Image and Video Technology (PSIVT), pp. 349–355 (November 2010)
Tombari, F., Gori, F., Di Stefano, L.: Evaluation of stereo algorithms for 3d object recognition. In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp. 990–997 (November 2011)
Tombari, F., Salti, S.: A combined texture-shape descriptor for enhanced 3d feature matching. In: 2011 18th IEEE International Conference on Image Processing (ICIP), pp. 809–812 (September 2011)
Tombari, F., Salti, S., Di Stefano, L.: Unique signatures of histograms for local surface description. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part III. LNCS, vol. 6313, pp. 356–369. Springer, Heidelberg (2010)
Tombari, F., Salti, S., DiStefano, L.: Performance evaluation of 3d keypoint detectors. International Journal of Computer Vision 102(1-3), 198–220 (2013)
Viejo, D., Garcia, J., Cazorla, M., Gil, D., Johnsson, M.: Using GNG to improve 3d feature extraction-application to 6dof egomotion. Neural Networks (2012)
Xu, G., Mourrain, B., Duvigneau, R., Galligo, A.: Analysis-suitable volume parameterization of multi-block computational domain in isogeometric applications. Computer-Aided Design 45(2), 395–404 (2013), solid and Physical Modeling 2012
Zhong, Y.: Intrinsic shape signatures: A shape descriptor for 3d object recognition. In: 2009 IEEE 12th International Conference on Computer Vision Workshops (ICCV Workshops), pp. 689–696 (September 2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Rangel, J.C., Morell, V., Cazorla, M., Orts-Escolano, S., García-Rodríguez, J. (2015). Object Recognition in Noisy RGB-D Data. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo-Moreo, F., Adeli, H. (eds) Bioinspired Computation in Artificial Systems. IWINAC 2015. Lecture Notes in Computer Science(), vol 9108. Springer, Cham. https://doi.org/10.1007/978-3-319-18833-1_28
Download citation
DOI: https://doi.org/10.1007/978-3-319-18833-1_28
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-18832-4
Online ISBN: 978-3-319-18833-1
eBook Packages: Computer ScienceComputer Science (R0)