Skip to main content

Optimized Representation of 3D Sequences Using Neural Networks

  • Conference paper
Bioinspired Computation in Artificial Systems (IWINAC 2015)

Abstract

We consider the problem of processing point cloud sequences. In particular, we represent and track objects in dynamic scenes acquired using low-cost 3D sensors such as the Kinect. A neural network based approach is proposed to represent and estimate 3D objects motion. This system addresses multiple computer vision tasks such as object segmentation, representation, motion analysis and tracking. The use of a neural network allows the unsupervised estimation of motion and the representation of objects in the scene. This proposal avoids the problem of finding corresponding features while tracking moving objects. A set of experiments are presented that demonstrate the validity of our method to track 3D objects. Favorable results are presented demonstrating the capabilities of the GNG algorithm for this task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Yang, H., Shao, L., Zheng, F., Wang, L., Song, Z.: Recent advances and trends in visual tracking: A review. Neurocomput. 74(18), 3823–3831 (2011)

    Article  Google Scholar 

  2. Fritzke, B.: A self-organizing network that can follow non-stationary distributions. In: Gerstner, W., Hasler, M., Germond, A., Nicoud, J.-D. (eds.) ICANN 1997. LNCS, vol. 1327, pp. 613–618. Springer, Heidelberg (1997)

    Google Scholar 

  3. Fritzke, B.: A Growing Neural Gas Network Learns Topologies, vol. 7, pp. 625–632. MIT Press (1995)

    Google Scholar 

  4. Frezza-Buet, H.: Following non-stationary distributions by controlling the vector quantization accuracy of a growing neural gas network. Neurocomput. 71, 1191–1202 (2008)

    Article  Google Scholar 

  5. Cao, X., Suganthan, P.N.: Hierarchical overlapped growing neural gas networks with applications to video shot detection and motion characterization. In: Proc. Int. Joint Conf. Neural Networks IJCNN 2002, vol. 2, pp. 1069–1074 (2002)

    Google Scholar 

  6. Frezza-Buet, H.: Online computing of non-stationary distributions velocity fields by an accuracy controlled growing neural gas. Neural Networks 60, 203–221 (2014)

    Article  Google Scholar 

  7. Coleca, F., State, A., Klement, S., Barth, E., Martinetz, T.: Self-organizing maps for hand and full body tracking. Neurocomputing 147, 174–184 (2015)

    Article  Google Scholar 

  8. Garcia-Rodriguez, J., Garcia-Chamizo, J.M.: Surveillance and human-computer interaction applications of self-growing models. Appl. Soft Comput. 11(7), 4413–4431 (2011)

    Article  Google Scholar 

  9. Garcia-Rodriguez, J., Orts-Escolano, S., Angelopoulou, A., Psarrou, A., Azorin-Lopez, J., Garcia-Chamizo, J.: Real time motion estimation using a neural architecture implemented on gpus. Journal of Real-Time Image Processing, 1–19 (2014)

    Google Scholar 

  10. Martinetz, T.M., Berkovich, S.G., Schulten, K.J.: ‘Neural-gas’ network for vector quantization and its application to time-series prediction 4(4), 558–569 (1993)

    Google Scholar 

  11. Orts-Escolano, S., Morell, V., Garcia-Rodriguez, J., Cazorla, M.: Point cloud data filtering and downsampling using growing neural gas. In: The 2013 International Joint Conference on Neural Networks, IJCNN 2013, Dallas, TX, USA, August 4-9, pp. 1–8 (2013)

    Google Scholar 

  12. Orts-Escolano, S., Garcia-Rodriguez, J., Moreli, V., Cazorla, M., Garcia-Chamizo, J.M.: 3d colour object reconstruction based on growing neural gas. In: 2014 International Joint Conference on Neural Networks (IJCNN), pp. 1474–1481 (July 2014)

    Google Scholar 

  13. Gschwandtner, M., Kwitt, R., Uhl, A., Pree, W.: BlenSor: Blender Sensor Simulation Toolbox. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Wang, S., Kyungnam, K., Benes, B., Moreland, K., Borst, C., DiVerdi, S., Yi-Jen, C., Ming, J. (eds.) ISVC 2011, Part II. LNCS, vol. 6939, pp. 199–208. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Orts-Escolano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Orts-Escolano, S., Garcia-Rodriguez, J., Morell, V., Cazorla, M., Garcia-Garcia, A., Ovidiu-Oprea, S. (2015). Optimized Representation of 3D Sequences Using Neural Networks. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo-Moreo, F., Adeli, H. (eds) Bioinspired Computation in Artificial Systems. IWINAC 2015. Lecture Notes in Computer Science(), vol 9108. Springer, Cham. https://doi.org/10.1007/978-3-319-18833-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18833-1_27

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18832-4

  • Online ISBN: 978-3-319-18833-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics