Skip to main content

Towards Robot Localization Using Bluetooth Low Energy Beacons RSSI Measures

  • Conference paper
Bioinspired Computation in Artificial Systems (IWINAC 2015)

Abstract

This article presents a preliminary study in order to explore the possibilities for robot localization using measured received signal strength indicator (RSSI) from Bluetooth low energy (BLE) beacons. BLE is a new brand technology focused on information transmission using very low energy consumption. It is being included in mobile devices from year 2011, nowadays almost every new mobile phone is shipped with this technology. Robot localization using particles filter has been developed in recent years using wireless technologies with a significant success. BLE beacons measures are rather noisier than measures from similar wireless devices. In this work we make an initial model of BLE measures and their noise. The model is used to generate data to be processed by a particle filter designed for localization using only ultra-wide band (UWB) beacons ranges. Data are generated with different noise level in order to explore localization errors behavior, these levels cover real noise levels founded in RSSI measure characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Liu, H., Darabi, H., Banerjee, P., Liu, J.: Survey of Wireless Indoor Positioning Techniques and Systems. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 37(6), 1067–1080 (2007), doi:10.1109/TSMCC.2007.905750

    Article  Google Scholar 

  2. Sana: A Survey of Indoor Localization Techniques. IOSR Journal of Electrical and Electronics Engineering 6(3), 69–76 (2013)

    Google Scholar 

  3. Pirzada, N., Yunus Nayan, M., Subhan, F., Fadzil Hassan, M., Amir Khan, M.: Comparative Analysis of Active and Passive Indoor Localization Systems. AASRI Procedia 5, 92–97 (2013), 2013 AASRI Conference on Parallel and Distributed Computing and Systems

    Google Scholar 

  4. Stojanović, D., Stojanović, N.: Indoor Localization and Tracking: Methods, Technologies and Research Challenges. Facta Universitatis, Series: Automatic Control and Robotics 13(1), 57–72 (2014)

    Google Scholar 

  5. Mainetti, L., Patrono, L., Sergi, I.: A survey on indoor positioning systems. In: 2014 22nd International Conference on Software, Telecommunications and Computer Networks (SoftCOM), pp. 111–120 (September 2014)

    Google Scholar 

  6. Heydon, R.: Bluetooth Low Energy - The Developer’s HandBook. Prentice Hall (October 2012)

    Google Scholar 

  7. Papamanthou, C., Preparata, F.P., Tamassia, R.: Algorithms for Location Estimation Based on RSSI Sampling. In: Fekete, S.P. (ed.) ALGOSENSORS 2008. LNCS, vol. 5389, pp. 72–86. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Zanca, G., Zorzi, F., Zanella, A., Zorzi, M.: Experimental Comparison of RSSI-based Localization Algorithms for Indoor Wireless Sensor Networks. In: Proceedings of the Workshop on Real-world Wireless Sensor Networks, REALWSN, pp. 1–5. ACM, New York (2008)

    Chapter  Google Scholar 

  9. Oliveira, L., Li, H., Almeida, L., Abrudan, T.E.: RSSI-based relative localisation for mobile robots. Ad Hoc Networks 13(pt.B(0)), 321–335 (2014)

    Google Scholar 

  10. Guvenc, I., Chong, C.-C.: A Survey on TOA Based Wireless Localization and NLOS Mitigation Techniques. IEEE Communications Surveys Tutorials 11(3), 107–124 (2009)

    Article  Google Scholar 

  11. Shen, J., Molisch, A.F., Salmi, J.: Accurate Passive Location Estimation Using TOA Measurements. IEEE Transactions on Wireless Communications 11(6), 2182–2192 (2012)

    Article  Google Scholar 

  12. Gustafsson, F., Gunnarsson, F.: Positioning using time-difference of arrival measurements. In: Proceedings of 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2003), vol. 6, p. VI-553-6 (April 2003)

    Google Scholar 

  13. McGuire, M., Plataniotis, K.N., Venetsanopoulos, A.N.: Location of mobile terminals using time measurements and survey points. IEEE Transactions on Vehicular Technology 52(4), 999–1011 (2003)

    Article  Google Scholar 

  14. Niculescu, D., Nath, B.: Ad hoc positioning system (APS) using AOA. In: Twenty-Second Annual Joint Conference of the IEEE Computer and Communications, INFOCOM 2003, vol. 3, pp. 1734–1743. IEEE Societies (March 2003)

    Google Scholar 

  15. Cong, L., Zhuang, W.: Nonline-of-sight error mitigation in mobile location. In: Twenty-third AnnualJoint Conference of the IEEE Computer and Communications Societies, INFOCOM 2004, vol. 1, p. 659 (March 2004)

    Google Scholar 

  16. Muthukrishnan, K., Koprinkov, G.T., Meratnia, N., Lijding, M.E.M.: Using time-of-flight for WLAN localization: feasibility study. Technical Report TR-CTI, Enschede (June 2006)

    Google Scholar 

  17. Chiang, J.T., Haas, J.J., Hu, Y.-C.: Secure and Precise Location Verification Using Distance Bounding and Simultaneous Multilateration. In: Proceedings of the Second ACM Conference on Wireless Network Security, WiSec 2009, pp. 181–192. ACM, New York (2009)

    Chapter  Google Scholar 

  18. Thrun, S., Burgard, W., Fox, D.: Probabilistic robotics. MIT Press (2005)

    Google Scholar 

  19. Marchetti, L., Grisetti, G., Iocchi, L.: A comparative analysis of particle filter based localization methods. In: Lakemeyer, G., Sklar, E., Sorrenti, D.G., Takahashi, T. (eds.) RoboCup 2006: Robot Soccer World Cup X. LNCS (LNAI), vol. 4434, pp. 442–449. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  20. González, J., Blanco, J.L., Galindo, C., Ortiz-de Galisteo, A., Fernández-Madrigal, J.A., Moreno, F.A., Martínez, J.L.: Mobile robot localization based on Ultra-Wide-Band ranging: A particle filter approach. Robotics and Autonomous Systems 57(5), 496–507 (2009)

    Article  Google Scholar 

  21. Dahlgren, E., Mahmood, H.: Evaluation of indoor positioning based on BluetoothR Smart technology. Master’s thesis (2014)

    Google Scholar 

  22. Android Beacon Library, http://altbeacon.github.io/android-beacon-library/

  23. Doucet, A., de Freitas, N., Murphy, K.P., Russell, S.J.: Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks. In: Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence, UAI 2000, pp. 176–183. Morgan Kaufmann Publishers Inc., San Francisco (2000)

    Google Scholar 

  24. MRPT Application: ro-localization, http://www.mrpt.org/list-of-mrpt-apps/application-ro-localization/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Cuadra-Troncoso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Cuadra-Troncoso, J.M., Rivas-Casado, A., Álvarez-Sánchez, J.R., de la Paz-López, F., Obregón-Castellanos, D. (2015). Towards Robot Localization Using Bluetooth Low Energy Beacons RSSI Measures. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo-Moreo, F., Adeli, H. (eds) Bioinspired Computation in Artificial Systems. IWINAC 2015. Lecture Notes in Computer Science(), vol 9108. Springer, Cham. https://doi.org/10.1007/978-3-319-18833-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18833-1_24

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18832-4

  • Online ISBN: 978-3-319-18833-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics