Abstract
Scene understanding is still an important challenge in robotics. In this paper we analyze the utility of scene recognition to determine the localization of a robot. We assume that multi-sensor localization systems may be very useful in crowded environments where there will be many people around the robot but not many changes of the furniture. In our localization system we categorize the sensors in two groups: accurate sensor models able to determine the pose of the robot accurately but which are sensible to noise or the presence of people. Robust sensor modalities able to provide rough information about the pose of the robot in almost any condition. The performance of our localization strategy was analyzed through two experiments realized in the Centro Singular de Investigacion en Tecnoloxias da Informacion (CITIUS), at the University of Santiago de Compostela.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Wu, J., Christensen, H.I., Rehg, J.M.: Visual Place Categorization. Problem, Dataset, and Algorithm. In: The 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4763–4770 (2009)
Canedo-Rodriguez, A., Alvarez-Santos, V., Santos-Saavedra, D., Gamallo, C., Fernandez-Delgado, M., Iglesias, R., Regueiro, C.V.: Robust multi-sensor system for mobile robot localization. In: Ferrández Vicente, J.M., Álvarez Sánchez, J.R., de la Paz López, F., Toledo Moreo, F. J. (eds.) IWINAC 2013, Part II. LNCS, vol. 7931, pp. 92–101. Springer, Heidelberg (2013)
Drumheller, M.: Mobile robot localization using sonar. IEEE Transactions on Pattern Analysis and Machine Intelligence (2), 325–332 (1987)
Hahnel, D., Burgard, W., Fox, D., Fishkin, K., Philipose, M.: Mapping and localization with RFID technology. In: Proceedings of 2004 IEEE International Conference on Robotics and Automation, ICRA 2004, vol. 1, pp. 1015–1020. IEEE (April 2004)
Wu, J., Rehg, J.M.: CENTRIST: A Visual Descriptor for Scene Categorization. IEEE Trans. Pattern Analysis and Machine Intelligence 33(8), 1489–1501 (2011)
Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Computer Vision and Image Understanding 110(3), 346–359 (2008)
Luo, J., Pronobis, A., Caputo, B., Jensfelt, P.: The KTH-IDOL2 database. Technical Report CVAP304, Kungliga Tekniska Hgskolan, CVAP/CAS (October 2006), http://cogvis.nada.kth.se/IDOL/
Canedo-Rodriguez, A., Alvarez-Santos, V., Santos-Saavedra, D., Gamallo, C., Fernandez-Delgado, M., Iglesias, R., Regueiro, C.V.: Robust multi-sensor system for mobile robot localization. In: Ferrández Vicente, J.M., Álvarez Sánchez, J.R., de la Paz López, F., Toledo Moreo, F. J. (eds.) IWINAC 2013, Part II. LNCS, vol. 7931, pp. 92–101. Springer, Heidelberg (2013)
Thrun, S., Burgard, W., Fox, D., et al.: Probabilistic robotics, vol. 1. MIT press, Cambridge (2005)
Grisetti, G., Stachniss, C., Burgard, W.: Improved techniques for grid mapping with rao-blackwellized particle filters. IEEE Transactions on Robotics 23(1), 34–46 (2007)
Santos-Saavedra, D., Pardo, X.M., Iglesias, R., Canedo-Rodríguez, A., Álvarez-Santos, V.: Scene recognition invariant to symmetrical reflections and illumination conditions in robotics. Accepted to ibPRIA 2015 (2015)
Canedo-Rodriguez, A., Iglesias, R., Regueiro, C.V., Alvarez-Santos, V., Pardo, X.M.: Self-organized multi-camera network for a fast and easy deployment of ubiquitous robots in unknown environments. Sensors 13(1), 426–454 (2013)
Thrun, S., Burgard, W., Fox, D.: Probabilistic robotics. MIT Press, Cambridge (2005)
Rasmussen, C.E., Williams, C.K.I.: Gaussian processes for machine learning, MIT Press (2006)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Santos-Saavedra, D., Canedo-Rodriguez, A., Pardo, X.M., Iglesias, R., Regueiro, C.V. (2015). Scene Recognition for Robot Localization in Difficult Environments. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo-Moreo, F., Adeli, H. (eds) Bioinspired Computation in Artificial Systems. IWINAC 2015. Lecture Notes in Computer Science(), vol 9108. Springer, Cham. https://doi.org/10.1007/978-3-319-18833-1_21
Download citation
DOI: https://doi.org/10.1007/978-3-319-18833-1_21
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-18832-4
Online ISBN: 978-3-319-18833-1
eBook Packages: Computer ScienceComputer Science (R0)