Skip to main content

Scene Recognition for Robot Localization in Difficult Environments

  • Conference paper
Bioinspired Computation in Artificial Systems (IWINAC 2015)

Abstract

Scene understanding is still an important challenge in robotics. In this paper we analyze the utility of scene recognition to determine the localization of a robot. We assume that multi-sensor localization systems may be very useful in crowded environments where there will be many people around the robot but not many changes of the furniture. In our localization system we categorize the sensors in two groups: accurate sensor models able to determine the pose of the robot accurately but which are sensible to noise or the presence of people. Robust sensor modalities able to provide rough information about the pose of the robot in almost any condition. The performance of our localization strategy was analyzed through two experiments realized in the Centro Singular de Investigacion en Tecnoloxias da Informacion (CITIUS), at the University of Santiago de Compostela.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wu, J., Christensen, H.I., Rehg, J.M.: Visual Place Categorization. Problem, Dataset, and Algorithm. In: The 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4763–4770 (2009)

    Google Scholar 

  2. Canedo-Rodriguez, A., Alvarez-Santos, V., Santos-Saavedra, D., Gamallo, C., Fernandez-Delgado, M., Iglesias, R., Regueiro, C.V.: Robust multi-sensor system for mobile robot localization. In: Ferrández Vicente, J.M., Álvarez Sánchez, J.R., de la Paz López, F., Toledo Moreo, F. J. (eds.) IWINAC 2013, Part II. LNCS, vol. 7931, pp. 92–101. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  3. Drumheller, M.: Mobile robot localization using sonar. IEEE Transactions on Pattern Analysis and Machine Intelligence (2), 325–332 (1987)

    Google Scholar 

  4. Hahnel, D., Burgard, W., Fox, D., Fishkin, K., Philipose, M.: Mapping and localization with RFID technology. In: Proceedings of 2004 IEEE International Conference on Robotics and Automation, ICRA 2004, vol. 1, pp. 1015–1020. IEEE (April 2004)

    Google Scholar 

  5. Wu, J., Rehg, J.M.: CENTRIST: A Visual Descriptor for Scene Categorization. IEEE Trans. Pattern Analysis and Machine Intelligence 33(8), 1489–1501 (2011)

    Article  Google Scholar 

  6. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Computer Vision and Image Understanding 110(3), 346–359 (2008)

    Article  Google Scholar 

  7. Luo, J., Pronobis, A., Caputo, B., Jensfelt, P.: The KTH-IDOL2 database. Technical Report CVAP304, Kungliga Tekniska Hgskolan, CVAP/CAS (October 2006), http://cogvis.nada.kth.se/IDOL/

  8. Canedo-Rodriguez, A., Alvarez-Santos, V., Santos-Saavedra, D., Gamallo, C., Fernandez-Delgado, M., Iglesias, R., Regueiro, C.V.: Robust multi-sensor system for mobile robot localization. In: Ferrández Vicente, J.M., Álvarez Sánchez, J.R., de la Paz López, F., Toledo Moreo, F. J. (eds.) IWINAC 2013, Part II. LNCS, vol. 7931, pp. 92–101. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  9. Thrun, S., Burgard, W., Fox, D., et al.: Probabilistic robotics, vol. 1. MIT press, Cambridge (2005)

    MATH  Google Scholar 

  10. Grisetti, G., Stachniss, C., Burgard, W.: Improved techniques for grid mapping with rao-blackwellized particle filters. IEEE Transactions on Robotics 23(1), 34–46 (2007)

    Article  Google Scholar 

  11. Santos-Saavedra, D., Pardo, X.M., Iglesias, R., Canedo-Rodríguez, A., Álvarez-Santos, V.: Scene recognition invariant to symmetrical reflections and illumination conditions in robotics. Accepted to ibPRIA 2015 (2015)

    Google Scholar 

  12. Canedo-Rodriguez, A., Iglesias, R., Regueiro, C.V., Alvarez-Santos, V., Pardo, X.M.: Self-organized multi-camera network for a fast and easy deployment of ubiquitous robots in unknown environments. Sensors 13(1), 426–454 (2013)

    Article  Google Scholar 

  13. Thrun, S., Burgard, W., Fox, D.: Probabilistic robotics. MIT Press, Cambridge (2005)

    MATH  Google Scholar 

  14. Rasmussen, C.E., Williams, C.K.I.: Gaussian processes for machine learning, MIT Press (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Santos-Saavedra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Santos-Saavedra, D., Canedo-Rodriguez, A., Pardo, X.M., Iglesias, R., Regueiro, C.V. (2015). Scene Recognition for Robot Localization in Difficult Environments. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo-Moreo, F., Adeli, H. (eds) Bioinspired Computation in Artificial Systems. IWINAC 2015. Lecture Notes in Computer Science(), vol 9108. Springer, Cham. https://doi.org/10.1007/978-3-319-18833-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18833-1_21

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18832-4

  • Online ISBN: 978-3-319-18833-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics