Skip to main content

Experiments of Skin Detection in Hyperspectral Images

  • Conference paper
Bioinspired Computation in Artificial Systems (IWINAC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9108))

  • 1954 Accesses

Abstract

Skin detection in hyperspectral images has many potential applications to health monitoring and surveillance. In this paper we report on two different approaches that we have followed to tackle with this problem. First, the problem is treated as a classification problem using of active learning strategies to achieve a robust classifier in a short numver of interactions. Second, we approach the problem from the point of view of hyperspectral unmixing, looking for skin endmembers that would allow quick detection in large datasets. We test a new sparse lattice computing based algorithm. We provide experimental results over a dataset of human images in outdoors sunny environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Amit, Y., Geman, D.: Shape quantization and recognition with randomized trees. Neural Computation 9(7), 1545–1588 (1997)

    Article  Google Scholar 

  2. Blumensath, T., Davies, M.E.: Gradient pursuits. IEEE Transactions on Signal Processing 56(6), 2370–2382 (2008)

    Article  MathSciNet  Google Scholar 

  3. Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140 (1996)

    MATH  MathSciNet  Google Scholar 

  4. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  5. Cleveland, W.S.: Robust locally weighted regression and smoothing scatterplots. Journal of the American Statistical Association 74(368), 829–836 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cohn, D., Atlas, L., Ladner, R.: Improving generalization with active learning. Machine Learning 15, 201–221 (1994), 10.1007/BF00993277

    Google Scholar 

  7. Fu, Y., Zhu, X., Li, B.: A survey on instance selection for active learning. Knowledge and Information Systems 35(2), 249–283 (2013)

    Article  Google Scholar 

  8. Graña, M., Savio, A.M., Garcia-Sebastian, M., Fernandez, E.: A lattice computing approach for on-line FMRI analysis. Image and Vision Computing 28(7), 1155–1161 (2010)

    Article  Google Scholar 

  9. Graña, M., Villaverde, I., Maldonado, J.O., Hernandez, C.: Two lattice computing approaches for the unsupervised segmentation of hyperspectral images. Neurocomputing 72(10-12), 2111–2120 (2009)

    Article  Google Scholar 

  10. Ho, T.K.: The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(8), 832–844 (1998)

    Article  Google Scholar 

  11. Huang, S.-J., Jin, R., Zhou, Z.-H.: Active learning by querying informative and representative examples. IEEE Transactions on Pattern Analysis and Machine Intelligence 36(10), 1936–1949 (2014)

    Article  Google Scholar 

  12. Iordache, M.-D., Bioucas-Dias, J.M., Plaza, A.: Sparse unmixing of hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing 49(6), 2014–2039 (2011)

    Article  Google Scholar 

  13. Green, R., Boardman, J., Kruse, F.: Mapping target signatures via partial unmixing of aviris data. Technical report, Jet Propulsion Laboratory (JPL) (1995)

    Google Scholar 

  14. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401, 788–791 (1999)

    Article  Google Scholar 

  15. Marques, I., Graña, M.: Hybrid sparse linear and lattice method for hyperspectral image unmixing. In: Polycarpou, M., de Carvalho, A.C.P.L.F., Pan, J.-S., Woźniak, M., Quintian, H., Corchado, E. (eds.) HAIS 2014. LNCS, vol. 8480, pp. 266–273. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  16. Nunez, A.S., Mendenhall, M.J.: Detection of human skin in near infrared hyperspectral imagery. In: IEEE International on Geoscience and Remote Sensing Symposium, IGARSS 2008, vol. 2, pp. II–621–II–624 (2008)

    Google Scholar 

  17. Plaza, A., Chang, C.-I.: Impact of initialization on design of endmember extraction algorithms. IEEE Transactions on Geoscience and Remote Sensing 44, 3397–3407 (2006)

    Article  Google Scholar 

  18. Ritter, G.X., Urcid, G.: A lattice matrix method for hyperspectral image unmixing. Information Sciences 181(10), 1787–1803 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  19. Roy, N., Mccallum, A.: Toward optimal active learning through sampling estimation of error reduction. In: Proc. 18th International Conf. on Machine Learning, pp. 441–448. Morgan Kaufmann (2001)

    Google Scholar 

  20. Trierscheid, M., Pellenz, J., Paulus, D., Balthasar, D.: Hyperspectral imaging or victim detection with rescue robots. In: IEEE International Workshop on Safety, Security and Rescue Robotics, SSRR 2008, pp. 7–12 (2008)

    Google Scholar 

  21. Tuia, D., Pasolli, E., Emery, W.J.: Using active learning to adapt remote sensing image classifiers. Remote Sensing of Environment (2011)

    Google Scholar 

  22. Uto, K., Kosugi, Y., Murase, T., Takagishi, S.: Hyperspectral band selection for human detection. In: 2012 IEEE 7th Sensor Array and Multichannel Signal Processing Workshop (SAM), pp. 501–504 (2012)

    Google Scholar 

  23. Winter, M.E.: N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data. In: Imaging Spectrometry V. SPIE Proceedings, vol. 3753, pp. 266–275. SPIE (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Graña .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Graña, M., Marques, I. (2015). Experiments of Skin Detection in Hyperspectral Images. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo-Moreo, F., Adeli, H. (eds) Bioinspired Computation in Artificial Systems. IWINAC 2015. Lecture Notes in Computer Science(), vol 9108. Springer, Cham. https://doi.org/10.1007/978-3-319-18833-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18833-1_20

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18832-4

  • Online ISBN: 978-3-319-18833-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics