Abstract
Skin detection in hyperspectral images has many potential applications to health monitoring and surveillance. In this paper we report on two different approaches that we have followed to tackle with this problem. First, the problem is treated as a classification problem using of active learning strategies to achieve a robust classifier in a short numver of interactions. Second, we approach the problem from the point of view of hyperspectral unmixing, looking for skin endmembers that would allow quick detection in large datasets. We test a new sparse lattice computing based algorithm. We provide experimental results over a dataset of human images in outdoors sunny environment.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Amit, Y., Geman, D.: Shape quantization and recognition with randomized trees. Neural Computation 9(7), 1545–1588 (1997)
Blumensath, T., Davies, M.E.: Gradient pursuits. IEEE Transactions on Signal Processing 56(6), 2370–2382 (2008)
Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140 (1996)
Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)
Cleveland, W.S.: Robust locally weighted regression and smoothing scatterplots. Journal of the American Statistical Association 74(368), 829–836 (1979)
Cohn, D., Atlas, L., Ladner, R.: Improving generalization with active learning. Machine Learning 15, 201–221 (1994), 10.1007/BF00993277
Fu, Y., Zhu, X., Li, B.: A survey on instance selection for active learning. Knowledge and Information Systems 35(2), 249–283 (2013)
Graña, M., Savio, A.M., Garcia-Sebastian, M., Fernandez, E.: A lattice computing approach for on-line FMRI analysis. Image and Vision Computing 28(7), 1155–1161 (2010)
Graña, M., Villaverde, I., Maldonado, J.O., Hernandez, C.: Two lattice computing approaches for the unsupervised segmentation of hyperspectral images. Neurocomputing 72(10-12), 2111–2120 (2009)
Ho, T.K.: The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(8), 832–844 (1998)
Huang, S.-J., Jin, R., Zhou, Z.-H.: Active learning by querying informative and representative examples. IEEE Transactions on Pattern Analysis and Machine Intelligence 36(10), 1936–1949 (2014)
Iordache, M.-D., Bioucas-Dias, J.M., Plaza, A.: Sparse unmixing of hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing 49(6), 2014–2039 (2011)
Green, R., Boardman, J., Kruse, F.: Mapping target signatures via partial unmixing of aviris data. Technical report, Jet Propulsion Laboratory (JPL) (1995)
Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401, 788–791 (1999)
Marques, I., Graña, M.: Hybrid sparse linear and lattice method for hyperspectral image unmixing. In: Polycarpou, M., de Carvalho, A.C.P.L.F., Pan, J.-S., Woźniak, M., Quintian, H., Corchado, E. (eds.) HAIS 2014. LNCS, vol. 8480, pp. 266–273. Springer, Heidelberg (2014)
Nunez, A.S., Mendenhall, M.J.: Detection of human skin in near infrared hyperspectral imagery. In: IEEE International on Geoscience and Remote Sensing Symposium, IGARSS 2008, vol. 2, pp. II–621–II–624 (2008)
Plaza, A., Chang, C.-I.: Impact of initialization on design of endmember extraction algorithms. IEEE Transactions on Geoscience and Remote Sensing 44, 3397–3407 (2006)
Ritter, G.X., Urcid, G.: A lattice matrix method for hyperspectral image unmixing. Information Sciences 181(10), 1787–1803 (2011)
Roy, N., Mccallum, A.: Toward optimal active learning through sampling estimation of error reduction. In: Proc. 18th International Conf. on Machine Learning, pp. 441–448. Morgan Kaufmann (2001)
Trierscheid, M., Pellenz, J., Paulus, D., Balthasar, D.: Hyperspectral imaging or victim detection with rescue robots. In: IEEE International Workshop on Safety, Security and Rescue Robotics, SSRR 2008, pp. 7–12 (2008)
Tuia, D., Pasolli, E., Emery, W.J.: Using active learning to adapt remote sensing image classifiers. Remote Sensing of Environment (2011)
Uto, K., Kosugi, Y., Murase, T., Takagishi, S.: Hyperspectral band selection for human detection. In: 2012 IEEE 7th Sensor Array and Multichannel Signal Processing Workshop (SAM), pp. 501–504 (2012)
Winter, M.E.: N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data. In: Imaging Spectrometry V. SPIE Proceedings, vol. 3753, pp. 266–275. SPIE (1999)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Graña, M., Marques, I. (2015). Experiments of Skin Detection in Hyperspectral Images. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo-Moreo, F., Adeli, H. (eds) Bioinspired Computation in Artificial Systems. IWINAC 2015. Lecture Notes in Computer Science(), vol 9108. Springer, Cham. https://doi.org/10.1007/978-3-319-18833-1_20
Download citation
DOI: https://doi.org/10.1007/978-3-319-18833-1_20
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-18832-4
Online ISBN: 978-3-319-18833-1
eBook Packages: Computer ScienceComputer Science (R0)