Skip to main content

Online Control of Enumeration Strategies via Bat-Inspired Optimization

  • Conference paper
Bioinspired Computation in Artificial Systems (IWINAC 2015)

Abstract

Constraint programming allows to solve constraint satisfaction and optimization problems by building and then exploring a search tree of potential solutions. Potential solutions are generated by firstly selecting a variable and then a value from the given problem. The enumeration strategy is responsible for selecting the order in which those variables and values are selected to produce a potential solution. There exist different ways to perform this selection, and depending on the quality of this decision, the efficiency of the solving process may dramatically vary. A modern idea to handle this concern, is to interleave during solving time a set of different strategies instead of using a single one. The strategies are evaluated according to process indicators in order to use the most promising one on each part of the search process. This process is known as online control of enumeration strategies and its correct configuration can be seen itself as an optimization problem. In this paper, we present a new system for online control of enumeration strategies based on bat-inspired optimization. The bat algorithm is a relatively modern metaheuristic based on the location behavior of bats that employ echoes to identify the objects in their surrounding area. We illustrate, promising results where the proposed bat algorithm is able to outperform previously reported metaheuristic-based approaches for online control of enumeration strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Crawford, B., Soto, R., Montecinos, M., Castro, C., Monfroy, E.: A Framework for Autonomous Search in the Eclips e Solver. In: Mehrotra, K.G., Mohan, C.K., Oh, J.C., Varshney, P.K., Ali, M. (eds.) IEA/AIE 2011, Part I. LNCS, vol. 6703, pp. 79–84. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  2. Barták, R., Rudová, H.: Limited assignments: A new cutoff strategy for incomplete depth-first search. In: Proceedings of the 20th ACM Symposium on Applied Computing (SAC), pp. 388–392 (2005)

    Google Scholar 

  3. Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search by weighting constraints. In: Proceedings of the 16th Eureopean Conference on Artificial Intelligence (ECAI), pp. 146–150. IOS Press (2004)

    Google Scholar 

  4. Crawford, B., Castro, C., Monfroy, E., Soto, R., Palma, W., Paredes, F.: Dynamic Selection of Enumeration Strategies for Solving Constraint Satisfaction Problems. Rom. J. Inf. Sci. Tech. (2012) (to appear)

    Google Scholar 

  5. Crawford, B., Soto, R., Castro, C., Monfroy, E., Paredes, F.: An Extensible Autonomous Search Framework for Constraint Programming. Int. J. Phys. Sci. 6(14), 3369–3376 (2011)

    Google Scholar 

  6. Crawford, B., Soto, R., Monfroy, E., Palma, W., Castro, C., Paredes, F.: Parameter tuning of a choice-function based hyperheuristic using particle swarm optimization. Expert Syst. Appl. 40(5), 1690–1695 (2013)

    Article  Google Scholar 

  7. Epstein, S., Petrovic, S.: Learning to solve constraint problems. In: Proceedings of the Workshop on Planning and Learning (ICAPS) (2007)

    Google Scholar 

  8. Epstein, S.L., Freuder, E.C., Wallace, R.J., Morozov, A., Samuels, B.: The adaptive constraint engine. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 525–542. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  9. Grimes, D., Wallace, R.J.: Learning to identify global bottlenecks in constraint satisfaction search. In: Proceedings of the Twentieth International Florida Artificial Intelligence Research Society (FLAIRS) Conference, pp. 592–597. AAAI Press (2007)

    Google Scholar 

  10. Hamadi, Y., Monfroy, E., Saubion, F.: Autonomous Search. Springer (2012)

    Google Scholar 

  11. Karaboga, D., Basturk, B.: On the performance of artificial bee colony (abc) algorithm. Appl. Soft Comput. 8(1), 687–697 (2008)

    Article  Google Scholar 

  12. Maturana, J., Saubion, F.: A compass to guide genetic algorithms. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 256–265. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Rashedi, E., Nezamabadi-pour, H., Saryazdi, S.: Gsa: A gravitational search algorithm. Inf. Sci. 179(13), 2232–2248 (2009)

    Article  MATH  Google Scholar 

  14. Wallace, R.J., Grimes, D.: Experimental studies of variable selection strategies based on constraint weights. J. Algorithms 63(1-3), 114–129 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. Xu, Y., Stern, D., Samulowitz, H.: Learning adaptation to solve constraint satisfaction problems. In: Proceedings of the 3rd International Conference on Learning and Intelligent Optimization (LION), pp. 507–523 (2009)

    Google Scholar 

  16. Yang, X.-S., Deb, S.: Cuckoo search via lévy flights. In: Proceedings of World Congress on Nature & Biologically Inspired Computing (NaBIC), pp. 210–214. IEEE (2009)

    Google Scholar 

  17. Yang, X.-S., Deb, S., Loomes, M., Karamanoglu, M.: A framework for self-tuning optimization algorithm. Neural Computing and Applications 23(7-8), 2051–2057 (2013)

    Article  Google Scholar 

  18. Yang, X.-S., He, X.: Bat algorithm: literature review and applications. IJBIC 5(3), 141–149 (2013)

    Article  Google Scholar 

  19. Yang, X.-S.: A new metaheuristic bat-inspired algorithm. In: González, J.R., Pelta, D.A., Cruz, C., Terrazas, G., Krasnogor, N. (eds.) NICSO 2010. Studies in Computational Intelligence, vol. 284, pp. 65–74. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  20. Yang, X.-S.: Bat algorithm for multi-objective optimisation. IJBIC 3(5), 267–274 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Soto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Soto, R., Crawford, B., Olivares, R., Johnson, F., Paredes, F. (2015). Online Control of Enumeration Strategies via Bat-Inspired Optimization. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo-Moreo, F., Adeli, H. (eds) Bioinspired Computation in Artificial Systems. IWINAC 2015. Lecture Notes in Computer Science(), vol 9108. Springer, Cham. https://doi.org/10.1007/978-3-319-18833-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18833-1_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18832-4

  • Online ISBN: 978-3-319-18833-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics