Abstract
Constraint programming allows to solve constraint satisfaction and optimization problems by building and then exploring a search tree of potential solutions. Potential solutions are generated by firstly selecting a variable and then a value from the given problem. The enumeration strategy is responsible for selecting the order in which those variables and values are selected to produce a potential solution. There exist different ways to perform this selection, and depending on the quality of this decision, the efficiency of the solving process may dramatically vary. A modern idea to handle this concern, is to interleave during solving time a set of different strategies instead of using a single one. The strategies are evaluated according to process indicators in order to use the most promising one on each part of the search process. This process is known as online control of enumeration strategies and its correct configuration can be seen itself as an optimization problem. In this paper, we present a new system for online control of enumeration strategies based on bat-inspired optimization. The bat algorithm is a relatively modern metaheuristic based on the location behavior of bats that employ echoes to identify the objects in their surrounding area. We illustrate, promising results where the proposed bat algorithm is able to outperform previously reported metaheuristic-based approaches for online control of enumeration strategies.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Crawford, B., Soto, R., Montecinos, M., Castro, C., Monfroy, E.: A Framework for Autonomous Search in the Eclips e Solver. In: Mehrotra, K.G., Mohan, C.K., Oh, J.C., Varshney, P.K., Ali, M. (eds.) IEA/AIE 2011, Part I. LNCS, vol. 6703, pp. 79–84. Springer, Heidelberg (2011)
Barták, R., Rudová, H.: Limited assignments: A new cutoff strategy for incomplete depth-first search. In: Proceedings of the 20th ACM Symposium on Applied Computing (SAC), pp. 388–392 (2005)
Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search by weighting constraints. In: Proceedings of the 16th Eureopean Conference on Artificial Intelligence (ECAI), pp. 146–150. IOS Press (2004)
Crawford, B., Castro, C., Monfroy, E., Soto, R., Palma, W., Paredes, F.: Dynamic Selection of Enumeration Strategies for Solving Constraint Satisfaction Problems. Rom. J. Inf. Sci. Tech. (2012) (to appear)
Crawford, B., Soto, R., Castro, C., Monfroy, E., Paredes, F.: An Extensible Autonomous Search Framework for Constraint Programming. Int. J. Phys. Sci. 6(14), 3369–3376 (2011)
Crawford, B., Soto, R., Monfroy, E., Palma, W., Castro, C., Paredes, F.: Parameter tuning of a choice-function based hyperheuristic using particle swarm optimization. Expert Syst. Appl. 40(5), 1690–1695 (2013)
Epstein, S., Petrovic, S.: Learning to solve constraint problems. In: Proceedings of the Workshop on Planning and Learning (ICAPS) (2007)
Epstein, S.L., Freuder, E.C., Wallace, R.J., Morozov, A., Samuels, B.: The adaptive constraint engine. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 525–542. Springer, Heidelberg (2002)
Grimes, D., Wallace, R.J.: Learning to identify global bottlenecks in constraint satisfaction search. In: Proceedings of the Twentieth International Florida Artificial Intelligence Research Society (FLAIRS) Conference, pp. 592–597. AAAI Press (2007)
Hamadi, Y., Monfroy, E., Saubion, F.: Autonomous Search. Springer (2012)
Karaboga, D., Basturk, B.: On the performance of artificial bee colony (abc) algorithm. Appl. Soft Comput. 8(1), 687–697 (2008)
Maturana, J., Saubion, F.: A compass to guide genetic algorithms. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 256–265. Springer, Heidelberg (2008)
Rashedi, E., Nezamabadi-pour, H., Saryazdi, S.: Gsa: A gravitational search algorithm. Inf. Sci. 179(13), 2232–2248 (2009)
Wallace, R.J., Grimes, D.: Experimental studies of variable selection strategies based on constraint weights. J. Algorithms 63(1-3), 114–129 (2008)
Xu, Y., Stern, D., Samulowitz, H.: Learning adaptation to solve constraint satisfaction problems. In: Proceedings of the 3rd International Conference on Learning and Intelligent Optimization (LION), pp. 507–523 (2009)
Yang, X.-S., Deb, S.: Cuckoo search via lévy flights. In: Proceedings of World Congress on Nature & Biologically Inspired Computing (NaBIC), pp. 210–214. IEEE (2009)
Yang, X.-S., Deb, S., Loomes, M., Karamanoglu, M.: A framework for self-tuning optimization algorithm. Neural Computing and Applications 23(7-8), 2051–2057 (2013)
Yang, X.-S., He, X.: Bat algorithm: literature review and applications. IJBIC 5(3), 141–149 (2013)
Yang, X.-S.: A new metaheuristic bat-inspired algorithm. In: González, J.R., Pelta, D.A., Cruz, C., Terrazas, G., Krasnogor, N. (eds.) NICSO 2010. Studies in Computational Intelligence, vol. 284, pp. 65–74. Springer, Heidelberg (2010)
Yang, X.-S.: Bat algorithm for multi-objective optimisation. IJBIC 3(5), 267–274 (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Soto, R., Crawford, B., Olivares, R., Johnson, F., Paredes, F. (2015). Online Control of Enumeration Strategies via Bat-Inspired Optimization. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo-Moreo, F., Adeli, H. (eds) Bioinspired Computation in Artificial Systems. IWINAC 2015. Lecture Notes in Computer Science(), vol 9108. Springer, Cham. https://doi.org/10.1007/978-3-319-18833-1_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-18833-1_1
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-18832-4
Online ISBN: 978-3-319-18833-1
eBook Packages: Computer ScienceComputer Science (R0)