Skip to main content

Comparative Study of the Features Used by Algorithms Based on Viola and Jones Face Detection Algorithm

  • Conference paper
Bioinspired Computation in Artificial Systems (IWINAC 2015)

Abstract

The problem of face detection has been one of the main topics in computer vision investigation and lots of methods have been proposed to solve it. One of the most important is the algorithm proposed by Viola and Jones that offer good results. Many studies have used this algorithm but none have analysed the advantages or disadvantages of using a certain type of feature in either the detection or the computation time. In this article we analyse the Viola algorithm [12] and other derivatives from the point of view of input characteristics and computing time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Triggs, B., Dalal, N.: Histograms of oriented gradients for human detection. In: CVPR, pp. 886–893 (2005)

    Google Scholar 

  2. Schneiderman, H.: A statistical approach to 3d object detection applied to faces and cars. PhD thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA (2000)

    Google Scholar 

  3. Li, Y., Lao, S., Huang, C., Ai, H.: High-performance rotation invariant multiview face detection. IEEE Trans. Pattern Anal. Mach. Intell. 29(4), 671–686 (2007)

    Article  Google Scholar 

  4. Levi, K., Weiss, Y.: Learning object detection from a small number of examples: the importance of good features (2004)

    Google Scholar 

  5. Zhang, Z., Li, S.: Floatboost learning and statistical face detection. IEEE Transactions Pattern Analysis and Machine Intelligence 26(9), 1112–1123 (2004)

    Article  Google Scholar 

  6. Li, S.Z., Zhu, L., Zhang, Z., Blake, A., Zhang, H., Shum, H.-Y.: Statistical learning of multi-view face detection. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part IV. LNCS, vol. 2353, pp. 67–81. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  7. Maydt, J., Lienhart, R.: An extended set of haar-like features for rapid object detection. In: IEEE ICIP, pp. 900–903 (2002)

    Google Scholar 

  8. Hori, O., Mita, T., Kaneko, T.: Joint haar-like features for face detection. In: Proceedings of the Tenth IEEE International Conference on Computer Vision, vol. 2, pp. 1619–1626 (2005)

    Google Scholar 

  9. Maenpaa, T., Ojala, T., Pietikainen, M.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions Pattern Analysis and Machine Intelligence 24(7), 971–987 (2002)

    Article  Google Scholar 

  10. Zhang, J., Paisitkriangkrai, S., Shen, C.: Face detection with effective feature extraction. CoRR (2010)

    Google Scholar 

  11. Kanade, T., Rowley, H., Baluja, S.: Rotation invariant neural network-based face detection. Technical report, Computer Science Department, Pittsburgh, PA (1997)

    Google Scholar 

  12. Jones, M., Viola, P.: Robust real-time face detection. International Journal of Computer Vision 5, 137–154 (2004)

    Google Scholar 

  13. Snow, D., Viola, P., Jones, M.: Detecting pedestrians using patterns of motion and appearance. International Journal of Computer Vision 63, 153–161 (2005)

    Article  Google Scholar 

  14. Zhang, Z., Zhang, C.: A survey of recent advances in face detection. Technical report, Microsoft Research Microsoft Corporation (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Paz Mena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Mena, A.P., Bachiller Mayoral, M., Díaz-Lópe, E. (2015). Comparative Study of the Features Used by Algorithms Based on Viola and Jones Face Detection Algorithm. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo-Moreo, F., Adeli, H. (eds) Bioinspired Computation in Artificial Systems. IWINAC 2015. Lecture Notes in Computer Science(), vol 9108. Springer, Cham. https://doi.org/10.1007/978-3-319-18833-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18833-1_19

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18832-4

  • Online ISBN: 978-3-319-18833-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics