Abstract
The Inventory Routing Problem is an important problem in logistics and known to belong to the class of NP hard problems. In the bicriteria inventory routing problem the goal is to simultaneously minimize distance cost and inventory costs. This paper is about the application of indicator-based evolutionary algorithms and swarm algorithms for finding an approximation to the Pareto front of this problem. We consider also robust vehicle routing as a tricriteria version of the problem.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: Multiobjective selection based on dominated hypervolume. European Journal of Operational Research 181(3), 1653–1669 (2007)
Coello, C.A.C., Lechuga, M.S.: Mopso: A proposal for multiple objective particle swarm optimization. In: Proceedings of the 2002 Congress on Evolutionary Computation, CEC 2002, vol. 2, pp. 1051–1056. IEEE (2002)
Emmerich, M.T.M., Beume, N., Naujoks, B.: An emo algorithm using the hypervolume measure as selection criterion. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 62–76. Springer, Heidelberg (2005)
Emmerich, M.T.M., Fonseca, C.M.: Computing hypervolume contributions in low dimensions: Asymptotically optimal algorithm and complexity results. In: Takahashi, R.H.C., Deb, K., Wanner, E.F., Greco, S. (eds.) EMO 2011. LNCS, vol. 6576, pp. 121–135. Springer, Heidelberg (2011)
Geiger, M.J., Sevaux, M.: The biobjective inventory routing problem–problem solution and decision support. In: Pahl, J., Reiners, T., Voß, S. (eds.) INOC 2011. LNCS, vol. 6701, pp. 365–378. Springer, Heidelberg (2011)
Guerreiro, A.P., Fonseca, C.M., Emmerich, M.T.M.: A fast dimension-sweep algorithm for the hypervolume indicator in four dimensions. In: CCCG, pp. 77–82 (2012)
Hupkens, I., Emmerich, M.: Logarithmic-time updates in sms-emoa and hypervolume-based archiving. In: Emmerich, M., et al. (eds.) EVOLVE - A Bridge between Probability, Set Oriented Numerics,and Evolutionary Computation IV. AISC, vol. 227, pp. 155–169. Springer, Heidelberg (2013)
Li, R., Emmerich, M., Eggermont, J., Bovenkamp, E.G.P.: Mixed-integer optimization of coronary vessel image analysis using evolution strategies. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, pp. 1645–1652. ACM (2006)
Miettinen, K.: Nonlinear multiobjective optimization, vol. 12. Springer Science & Business Media (1999)
Mostaghim, S., Branke, J., Schmeck, H.: Multi-objective particle swarm optimization on computer grids. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, GECCO 2007, pp. 869–875. ACM, New York (2007)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Yang, Z., Emmerich, M., Bäck, T., Kok, J. (2015). Multicriteria Inventory Routing by Cooperative Swarms and Evolutionary Algorithms. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo-Moreo, F., Adeli, H. (eds) Bioinspired Computation in Artificial Systems. IWINAC 2015. Lecture Notes in Computer Science(), vol 9108. Springer, Cham. https://doi.org/10.1007/978-3-319-18833-1_14
Download citation
DOI: https://doi.org/10.1007/978-3-319-18833-1_14
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-18832-4
Online ISBN: 978-3-319-18833-1
eBook Packages: Computer ScienceComputer Science (R0)