Skip to main content

Multicriteria Inventory Routing by Cooperative Swarms and Evolutionary Algorithms

  • Conference paper
Bioinspired Computation in Artificial Systems (IWINAC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9108))

Abstract

The Inventory Routing Problem is an important problem in logistics and known to belong to the class of NP hard problems. In the bicriteria inventory routing problem the goal is to simultaneously minimize distance cost and inventory costs. This paper is about the application of indicator-based evolutionary algorithms and swarm algorithms for finding an approximation to the Pareto front of this problem. We consider also robust vehicle routing as a tricriteria version of the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: Multiobjective selection based on dominated hypervolume. European Journal of Operational Research 181(3), 1653–1669 (2007)

    Article  MATH  Google Scholar 

  2. Coello, C.A.C., Lechuga, M.S.: Mopso: A proposal for multiple objective particle swarm optimization. In: Proceedings of the 2002 Congress on Evolutionary Computation, CEC 2002, vol. 2, pp. 1051–1056. IEEE (2002)

    Google Scholar 

  3. Emmerich, M.T.M., Beume, N., Naujoks, B.: An emo algorithm using the hypervolume measure as selection criterion. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 62–76. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Emmerich, M.T.M., Fonseca, C.M.: Computing hypervolume contributions in low dimensions: Asymptotically optimal algorithm and complexity results. In: Takahashi, R.H.C., Deb, K., Wanner, E.F., Greco, S. (eds.) EMO 2011. LNCS, vol. 6576, pp. 121–135. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  5. Geiger, M.J., Sevaux, M.: The biobjective inventory routing problem–problem solution and decision support. In: Pahl, J., Reiners, T., Voß, S. (eds.) INOC 2011. LNCS, vol. 6701, pp. 365–378. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. Guerreiro, A.P., Fonseca, C.M., Emmerich, M.T.M.: A fast dimension-sweep algorithm for the hypervolume indicator in four dimensions. In: CCCG, pp. 77–82 (2012)

    Google Scholar 

  7. Hupkens, I., Emmerich, M.: Logarithmic-time updates in sms-emoa and hypervolume-based archiving. In: Emmerich, M., et al. (eds.) EVOLVE - A Bridge between Probability, Set Oriented Numerics,and Evolutionary Computation IV. AISC, vol. 227, pp. 155–169. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  8. Li, R., Emmerich, M., Eggermont, J., Bovenkamp, E.G.P.: Mixed-integer optimization of coronary vessel image analysis using evolution strategies. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, pp. 1645–1652. ACM (2006)

    Google Scholar 

  9. Miettinen, K.: Nonlinear multiobjective optimization, vol. 12. Springer Science & Business Media (1999)

    Google Scholar 

  10. Mostaghim, S., Branke, J., Schmeck, H.: Multi-objective particle swarm optimization on computer grids. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, GECCO 2007, pp. 869–875. ACM, New York (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwei Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Yang, Z., Emmerich, M., Bäck, T., Kok, J. (2015). Multicriteria Inventory Routing by Cooperative Swarms and Evolutionary Algorithms. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo-Moreo, F., Adeli, H. (eds) Bioinspired Computation in Artificial Systems. IWINAC 2015. Lecture Notes in Computer Science(), vol 9108. Springer, Cham. https://doi.org/10.1007/978-3-319-18833-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18833-1_14

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18832-4

  • Online ISBN: 978-3-319-18833-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics