Skip to main content

Evolving Cellular Automata to Segment Hyperspectral Images Using Low Dimensional Images for Training

  • Conference paper
Bioinspired Computation in Artificial Systems (IWINAC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9108))

Abstract

This paper describes a hyperspectral image segmentation approach that has been developed to address the issues of lack of adequately labeled images, the computational load induced when using hyperspectral images in training and, especially, the adaptation of the level of segmentation to the desires of the users. The algorithm used is based on evolving cellular automata where the fitness is established based on the use of synthetic RGB images that are constructed on-line according to a set of parameters that define the type of segmentation the user wants. A series of segmentation experiments over real hyperspectral images are presented to show this adaptability and how the performance of the algorithm improves over other state of the art approaches found in the literature on the subject.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Darwish, A., Leukert, K., Reinhardt, W.: Image segmentation for the purpose of object-based classification. In: International Geoscience and Remote Sensing Symposium, vol. 3, pp. 2039–2041 (2003)

    Google Scholar 

  2. Tilton, J.C.: Analysis of hierarchically related image segmentations. In: IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, pp. 60–69 (2003)

    Google Scholar 

  3. Pesaresi, M., Benediktsson, J.A.: A new approach for the morphological segmentation of high-resolution satellite imagery. IEEE Transactions on Geoscience and Remote Sensing 39(2), 309–320 (2001)

    Article  Google Scholar 

  4. Farag, A.A., Mohamed, R.M., El-Baz, A.: A unified framework for MAP estimation in remote sensing image segmentation. IEEE Transactions on Geoscience and Remote Sensing 43(7), 1617–1634 (2005)

    Article  Google Scholar 

  5. Eches, O., Dobigeon, N., Tourneret, J.Y.: Markov random fields for joint unmixing and segmentation of hyperspectral images. In: 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), pp. 1–4 (2010)

    Google Scholar 

  6. Flouzat, G., Amram, O., Cherchali, S.: Spatial and spectral segmentation of satellite remote sensing imagery using processing graphs by mathematical morphology. In: IEEE International Geoscience and Remote Sensing Symposium Proceedings, IGARSS 1998, vol. 4, pp. 1–3 (1998)

    Google Scholar 

  7. Li, P.L.P., Xiao, X.X.X.: Evaluation of multiscale morphological segmentation of multispectral imagery for land cover classification. In: Proceedings of the 2004 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2004, 4, 0-3 (2004)

    Google Scholar 

  8. Quesada-Barriuso, P., Argello, F., Heras, D.B.: Efficient segmentation of hyperspectral images on commodity. Advances in Knowledge Based and Intelligent Information and Engineering Systems 243, 2130–2139 (2012)

    Google Scholar 

  9. Tarabalka, Y., Chanussot, J., Benediktsson, J.A.: Segmentation and classification of hyperspectral images using watershed transformation. Pattern Recognition 43(7), 2367–2379 (2010)

    Article  MATH  Google Scholar 

  10. Li, J., Bioucas-Dias, J.M., Plaza, A.: Hyperspectral Image Segmentation Using a New Bayesian Approach with Active Learning. IEEE Transactions on Geoscience and Remote Sensing 49(10), 3947–3960 (2011)

    Article  Google Scholar 

  11. Veracini, T., Matteoli, S., Diani, M., Corsini, G.: Robust Hyperspectral Image Segmentation Based on a Non-Gaussian Model. In: 2010 2nd International Workshop on Cognitive Information Processing (CIP), pp. 192–197 (2010)

    Google Scholar 

  12. Duro, R.J., Lopez-Pena, F., Crespo, J.L.: Using Gaussian Synapse ANNs for Hyperspectral Image Segmentation and Endmember Extraction. In: Graña, M., Duro, R.J. (eds.) Computational Intelligence for Remote Sensing. SCI, vol. 133, pp. 341–362. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Priego, B., Souto, D., Bellas, F., Duro, R.J.: Hyperspectral image segmentation through evolved cellular automata. Pattern Recognition Letters 34(14), 1648–1658 (2013)

    Article  Google Scholar 

  14. Storn, R., Price, K.: Differential evolution a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization 11(4), 341–359 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  15. Benediktsson, J., Pesaresi, M., Amason, K.: Classification and feature extraction for remote sensing images from urban areas based on morphological transformations. IEEE Trans. Geosci. Remote Sens. 41(9), 1940–1949 (2003)

    Article  Google Scholar 

  16. Marpu, P.R., Pedergnana, M., Mura, M.D., Benediktsson, J.A., Bruzzone, L.: Automatic generation of standard deviation attribute profiles for spectral-spatial classification of remote sensing data. IEEE Geosci. Remote Sens. Lett. 10(2), 293–297 (2013)

    Article  Google Scholar 

  17. Lopez-Fandino, J., Quesada-Barriuso, P., Heras, D., Arguello, F.: Efficient ELM-Based Techniques for the Classification of Hyperspectral Remote Sensing Images on Commodity GPUs. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing PP(99), 1–10 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Priego .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Priego, B., Bellas, F., Duro, R.J. (2015). Evolving Cellular Automata to Segment Hyperspectral Images Using Low Dimensional Images for Training. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo-Moreo, F., Adeli, H. (eds) Bioinspired Computation in Artificial Systems. IWINAC 2015. Lecture Notes in Computer Science(), vol 9108. Springer, Cham. https://doi.org/10.1007/978-3-319-18833-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18833-1_13

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18832-4

  • Online ISBN: 978-3-319-18833-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics