Skip to main content

A Binary Cuckoo Search Algorithm for Solving the Set Covering Problem

  • Conference paper
Bioinspired Computation in Artificial Systems (IWINAC 2015)

Abstract

The non-unicost set covering problem is a classical optimization benchmark that belongs to the Karp’s 21 NP-complete problems. In this paper, we present a new approach based on cuckoo search for solving such problem. Cuckoo search is a modern nature-inspired metaheuristic that has attracted much attention due to its rapid convergence and easy implementation. We illustrate interesting experimental results where the proposed cuckoo search algorithm reaches several global optimums for the non-unicost instances from the OR-Library.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Balas, E., Carrera, M.C.: A dynamic subgradient-based branch-and-bound procedure for set covering. Oper. Res. 44(6), 875–890 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  2. Beasley, J.E., Chu, P.C.: A genetic algorithm for the set covering problem. Eur. J. Oper. Res. 94(2), 392–404 (1996)

    Article  MATH  Google Scholar 

  3. Brusco, M.J., Jacobs, L.W., Thompson, G.M.: A morphing procedure to supplement a simulated annealing heuristic for cost- and coverage-correlated set-covering problems. Ann. Oper. Res. 86, 611–627 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Caprara, A., Fischetti, M., Toth, P.: A heuristic method for the set covering problem. Oper. Res. 47(5), 730–743 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Caprara, A., Toth, P., Fischetti, M.: Algorithms for the set covering problem. Ann. Oper. Res. 98, 353–371 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Caserta, M.: Tabu search-based metaheuristic algorithm for large-scale set covering problems. In: Doerner, K., Gendreau, M., Greistorfer, P., Gutjahr, W., Hartl, R., Reimann, M. (eds.) Metaheuristics. Operations Research/Computer Science Interfaces Series, vol. 39, pp. 43–63. Springer, US (2007)

    Chapter  Google Scholar 

  7. Ceria, S., Nobili, P., Sassano, A.: A Lagrangian-based heuristic for large-scale set covering problems. Math. Program. 81(2), 215–228 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chvatal, V.: A greedy heuristic for the set-covering problem. Math. Oper. Res. 4(3), 233–235 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  9. Crawford, B., Castro, C., Monfroy, E., Soto, R., Palma, W., Paredes, F.: Dynamic Selection of Enumeration Strategies for Solving Constraint Satisfaction Problems. Romanian Journal of Information Science and Technology 15(2), 106–128 (2013)

    Google Scholar 

  10. Fisher, M.L., Kedia, P.: Optimal solution of set covering/partitioning problems using dual heuristics. Management Science 36(6), 674–688 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  11. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1990)

    Google Scholar 

  12. Lan, G., DePuy, G.W.: On the effectiveness of incorporating randomness and memory into a multi-start metaheuristic with application to the set covering problem. Comput. Ind. Eng. 51(3), 362–374 (2006)

    Article  Google Scholar 

  13. Vasko, F.J., Wolf, F.E.: Optimal selection of ingot sizes via set covering. Oper. Res. 35(3), 346–353 (1987)

    Article  Google Scholar 

  14. Yang, X.-S., Deb, S.: Cuckoo search via Lévy Flights. In: Proc. of World Congress on Nature & Biologically Inspired Computing (NaBIC 2009), pp. 210–214. IEEE Publications, USA (December 2009)

    Google Scholar 

  15. Yang, X.S.: Bat algorithm and cuckoo search: a tutorial. In: Yang, X.S. (ed.) Artificial Intelligence, Evolutionary Computing and Metaheuristics. SCI, vol. 427, pp. 421–434. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Soto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Soto, R., Crawford, B., Olivares, R., Barraza, J., Johnson, F., Paredes, F. (2015). A Binary Cuckoo Search Algorithm for Solving the Set Covering Problem. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo-Moreo, F., Adeli, H. (eds) Bioinspired Computation in Artificial Systems. IWINAC 2015. Lecture Notes in Computer Science(), vol 9108. Springer, Cham. https://doi.org/10.1007/978-3-319-18833-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18833-1_10

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18832-4

  • Online ISBN: 978-3-319-18833-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics