Advertisement

A Nonlinear FETI-DP Method with an Inexact Coarse Problem

  • Axel Klawonn
  • Martin Lanser
  • Oliver RheinbachEmail author
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 104)

Abstract

A new nonlinear version of the well-known FETI-DP method (Finite Element Tearing and Interconnecting Dual-Primal) is introduced. In this method, the nonlinear problem is decomposed before linearization. Nonlinear approaches to domain decomposition can be viewed as a strategy to localize computational work for the efficient use with future extreme-scale supercomputers. As opposed to known nonlinear FETI-DP algorithms, in the new method the coarse solver can be replaced by a preconditioner, i.e., the coarse solve can be inexact. It is expected that the new method can show a superior parallel scalability if the number of subdomains is large. If the coarse solver is exact and the method is applied to linear problems then the method is equivalent to the standard FETI-DP method. Numerical results for up to 32,768 cores are presented using cycles of an algebraic multigrid for the coarse problem of the new method.

Keywords

Domain Decomposition Domain Decomposition Method Newton Step Krylov Method Full Newton Step 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

The authors would like to thank Satish Balay and Barry Smith, Argonne National Laboratory (ANL), USA, for the fruitful cooperation and the assistance on running the authors’ code on the MIRA Supercomputer (BG/P) at ANL. This work was supported in part by the German Research Foundation (DFG) through the Priority Programme 1648 “Software for Exascale Computing” (SPPEXA). The authors acknowledge the use of the Cray XT6 computer at Universität Duisburg-Essen. The authors also gratefully acknowledge the SuperMUC Supercomputer at Leibniz-Rechenzentrum (www.lrz.de).

References

  1. 1.
    S. Balay, W.D. Gropp, L.C. McInnes, B.F. Smith, Efficient management of parallelism in object oriented numerical software libraries, in Modern Software Tools in Scientific Computing, ed. by E. Arge, A.M. Bruaset, H.P. Langtangen (Birkhäuser, Basel, 1997), pp. 163–202CrossRefGoogle Scholar
  2. 2.
    S. Balay, J. Brown, K. Buschelman, V. Eijkhout, W.D. Gropp, D. Kaushik, M.G. Knepley, L.C. McInnes, B.F. Smith, H. Zhang, PETSc users manual. Technical report ANL-95/11 - Revision 3.4, Argonne National Laboratory (2013)Google Scholar
  3. 3.
    S. Balay, J. Brown, K. Buschelman, W.D. Gropp, D. Kaushik, M.G. Knepley, L.C. McInnes, B.F. Smith, H. Zhang, PETSc Web page (2013). http://www.mcs.anl.gov/petsc
  4. 4.
    F. Bordeu, P.-A. Boucard, P. Gosselet, Balancing domain decomposition with nonlinear relocalization: parallel implementation for laminates, in Proceedings of the First International Conference on Parallel, Distributed and Grid Computing for Engineering, ed. by B.H.V. Topping, P. Ivnyi (Civil-Comp Press, Stirlingshire, 2009)Google Scholar
  5. 5.
    X.-C. Cai, M. Dryja, Domain decomposition methods for monotone nonlinear elliptic problems, in Domain Decomposition Methods in Scientific and Engineering Computing (University Park, PA, 1993). Contemporary Mathematics, vol. 180 (American Mathematical Society, Providence, 1994), pp. 21–27Google Scholar
  6. 6.
    X.-C. Cai, D.E. Keyes, Nonlinearly preconditioned inexact Newton algorithms. SIAM J. Sci. Comput. 24(1), 183–200 (electronic) (2002)Google Scholar
  7. 7.
    X.-C. Cai, D.E. Keyes, L. Marcinkowski, Non-linear additive Schwarz preconditioners and application in computational fluid dynamics. Int. J. Numer. Methods Fluids 40(12), 1463–1470 (2002) [LMS Workshop on Domain Decomposition Methods in Fluid Mechanics (London, 2001)]Google Scholar
  8. 8.
    P. Cresta, O. Allix, C. Rey, S. Guinard, Nonlinear localization strategies for domain decomposition methods: application to post-buckling analyses. Comput. Methods Appl. Mech. Eng. 196(8), 1436–1446 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    J.-M. Cros, A preconditioner for the Schur complement domain decomposition method, in Domain Decomposition Methods in Science and Engineering, ed. by O. Widlund I. Herrera, D. Keyes, R. Yates. Proceedings of the 14th International Conference on Domain Decomposition Methods, National Autonomous University of Mexico (UNAM), Mexico City, 2003, pp. 373–380. http://www.ddm.org/DD14 [ISBN 970-32-0859-2]
  10. 10.
    S. Deparis, Numerical analysis of axisymmetric flows and methods for fluid-structure interaction arising in blood flow simulation. Ph.D. thesis, EPFL, 2004Google Scholar
  11. 11.
    S. Deparis, M. Discacciati, G. Fourestey, A. Quarteroni, Heterogeneus Domain Decomposition Methods for Fluid-Structure Interaction Problems. Domain Decomposition Methods in Science and Engineering XVI, vol. 55 (Springer, Berlin, 2005)Google Scholar
  12. 12.
    S. Deparis, M. Discacciati, G. Fourestey, A. Quarteroni, Fluid-structure algorithms based on Steklov-Poincaré operators. Comput. Methods Appl. Mech. Eng. 195, 5797–5812 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    C.R. Dohrmann, A preconditioner for substructuring based on constrained energy minimization. SIAM J. Sci. Comput. 25(1), 246–258 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    M. Dryja, W. Hackbusch, On the nonlinear domain decomposition method. BIT 37(2), 296–311 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    R.D. Falgout, J.E. Jones, U.M. Yang, The design and implementation of hypre, a library of parallel high performance preconditioners, in Numerical Solution of Partial Differential Equations on Parallel Computers, ed. by A.M. Bruaset, P. Bjorstad, A. Tveito. Lecture Notes in Computational Science and Engineering, vol. 51 (Springer, Berlin, 2006), pp. 267–294. Also available as LLNL Technical report UCRL-JRNL-205459. doi:10.1007/3-540-31619-1_8Google Scholar
  16. 16.
    C. Farhat, M. Lesoinne, P. LeTallec, K. Pierson, D. Rixen, FETI-DP: a dual-primal unified FETI method - Part i: a faster alternative to the two-level FETI method. Int. J. Numer. Methods Eng. 50, 1523–1544 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    C. Farhat, M. Lesoinne, K. Pierson, A scalable dual-primal domain decomposition method. Numer. Linear Algebra Appl. 7, 687–714 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    M.Á. Fernández, J.-F. Gerbeau, A. Gloria, M. Vidrascu, Domain decomposition based Newton methods for fluid-structure interaction problems, in CANUM 2006—Congrès National d’Analyse Numérique. ESAIM Proceedings, vol. 22 (EDP Sciences, Les Ulis, 2008), pp. 67–82Google Scholar
  19. 19.
    B. Ganis, G. Pencheva, M.F. Wheeler, T. Wildey, I. Yotov, A frozen Jacobian multiscale mortar preconditioner for nonlinear interface operators. Multiscale Model. Simul. 10(3), 853–873 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    B. Ganis, K. Kumar, G. Pencheva, M.F. Wheeler, I. Yotov, A global Jacobian method for Mortar discretizations of a fully-implicit two-phase flow model. Technical report 2014-01, The Institute for Computational Engineering and Sciences, The University of Texas at Austin, January 2014Google Scholar
  21. 21.
    C. Groß, R. Krause, A generalized recursive trust-region approach - nonlinear multiplicatively preconditioned trust-region methods and applications. Technical report 2010-09, Institute of Computational Science, Universita della Svizzera italiana, March 2010Google Scholar
  22. 22.
    C. Groß, R. Krause, On the globalization of ASPIN employing trust-region control strategies - convergence analysis and numerical examples. Technical report 2011-03, Institute of Computational Science, Universita della Svizzera italiana, January 2011Google Scholar
  23. 23.
    V.E. Henson, U.M. Yang, Boomeramg: a parallel algebraic multigrid solver and preconditioner. Appl. Numer. Math. 41, 155–177 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    F.-N. Hwang, X.-C. Cai, Improving robustness and parallel scalability of Newton method through nonlinear preconditioning, in Domain Decomposition Methods in Science and Engineering. Lecture Notes in Computer Science and Engineering, vol. 40 (Springer, Berlin, 2005), pp. 201–208Google Scholar
  25. 25.
    F.-N. Hwang, X.-C. Cai, A class of parallel two-level nonlinear Schwarz preconditioned inexact Newton algorithms. Comput. Methods Appl. Mech. Eng. 196(8), 1603–1611 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    A. Klawonn, O. Rheinbach, Inexact FETI-DP methods. Int. J. Numer. Methods Eng. 69(2), 284–307 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    A. Klawonn, O. Rheinbach, Robust FETI-DP methods for heterogeneous three dimensional elasticity problems. Comput. Methods Appl. Mech. Eng. 196(8), 1400–1414 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    A. Klawonn, O. Rheinbach, A hybrid approach to 3-level FETI. PAMM 8(1), 10841–10843 (2008). doi:10.1002/pamm.200810841 [Special Issue: 79th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM)]Google Scholar
  29. 29.
    A. Klawonn, O. Rheinbach, Highly scalable parallel domain decomposition methods with an application to biomechanics. ZAMM Z. Angew. Math. Mech. 90(1), 5–32 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    A. Klawonn, O.B. Widlund, Dual-primal FETI methods for linear elasticity. Commun. Pure Appl. Math. 59(11), 1523–1572 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    A. Klawonn, O.B. Widlund, M. Dryja, Dual-primal FETI methods for three-dimensional elliptic problems with heterogeneous coefficients. SIAM J. Numer. Anal. 40(1), 159–179 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    A. Klawonn, M. Lanser, P. Radtke, O. Rheinbach, On an adaptive coarse space and on nonlinear domain decomposition, in Domain Decomposition Methods in Science and Engineering. Proceedings of the 21st International Conference on Domain Decomposition Methods, Rennes, 25–29 June 2012. Lecture Notes on Computational Science and Engineering (Springer, Berlin, 2014). Accepted for publication, 12 pp.Google Scholar
  33. 33.
    A. Klawonn, M. Lanser, O. Rheinbach, Nonlinear FETI-DP and BDDC methods. SIAM J. Sci. Comput. 36(2), A737–A765 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    J. Li, O.B. Widlund, FETI–DP, BDDC, and Block Cholesky methods. Int. J. Numer. Methods Eng. 66(2), 250–271 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    J. Mandel, C.R. Dohrmann, Convergence of a balancing domain decomposition by constraints and energy minimization. Numer. Linear Algebra Appl. 10, 639–659 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    J. Mandel, C.R. Dohrmann, R. Tezaur, An algebraic theory for primal and dual substructuring methods by constraints. Appl. Numer. Math. 54, 167–193 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    J. Mandel, B. Sousedík, C.R. Dohrmann, On multilevel BDDC, in Domain Decomposition Methods in Science and Engineering XVII, ed. by U. Langer, M. Discacciati, D.E. Keyes, O.B. Widlund, W. Zulehner. Lecture Notes in Computational Science and Engineering, vol. 60 (Springer, Berlin, 2008), pp. 287–294Google Scholar
  38. 38.
    J. Nocedal, S.J. Wright, Numerical Optimization (Springer, New York, 2000)zbMATHGoogle Scholar
  39. 39.
    J. Pebrel, C. Rey, P. Gosselet, A nonlinear dual-domain decomposition method: application to structural problems with damage. Int. J. Multiscale Comput. Eng. 6(3), 251–262 (2008)CrossRefGoogle Scholar
  40. 40.
    O. Rheinbach, Parallel iterative substructuring in structural mechanics. Arch. Comput. Meth. Eng. 16(4), 425–463 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    B. Sousedík, J. Mandel, On adaptive-multilevel BDDC, in Domain Decomposition Methods in Science and Engineering XIX. Lecture Notes in Computational Science and Engineering, vol. 78 (Springer, Heidelberg, 2011), pp. 39–50Google Scholar
  42. 42.
    A. Toselli, O. Widlund, Domain Decomposition Methods - Algorithms and Theory. Springer Series in Computational Mathematics, vol. 34 (Springer, Berlin, 2004)Google Scholar
  43. 43.
    X. Tu, Three-level BDDC in three dimensions. SIAM J. Sci. Comput. 29(4), 1759–1780 (electronic) (2007)Google Scholar
  44. 44.
    X. Tu, Three-level BDDC in two dimensions. Int. J. Numer. Methods Eng. 69, 33–59 (2007)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Mathematisches InstitutUniversität zu KölnKölnGermany
  2. 2.Fakultät für Mathematik und InformatikInstitut für Numerische Mathematik und Optimierung, TU Bergakademie FreibergFreibergGermany

Personalised recommendations