Skip to main content

Abstract

Implicit integration methods based on collocation are attractive for a number of reasons, e.g. their ideal (for Gauss-Legendre nodes) or near ideal (Gauss-Radau or Gauss-Lobatto nodes) order and stability properties. However, straightforward application of a collocation formula with M nodes to an initial value problem with dimension d requires the solution of one large Md × Md system of nonlinear equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Alexander, Diagonally implicit Runge-Kutta methods for stiff O.D.E.’s. SIAM J. Numer. Anal. 14(6), 1006–1021 (1977)

    Google Scholar 

  2. A. Bourlioux, A. Layton, M. Minion, High-order multi-implicit spectral deferred correction methods for problems of reactive flow. J. Comput. Phys. 189(2), 651–675 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. E. Bouzarth, M. Minion, A multirate time integrator for regularized stokeslets. J. Comput. Phys. 229(11), 4208–4224 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Dutt, L. Greengard, V. Rokhlin, Spectral deferred correction methods for ordinary differential equations. BIT Numer. Math. 40(2), 241–266 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Emmett, M. Minion, Toward an efficient parallel in time method for partial differential equations. Commun. Appl. Math. Comput. Sci. 7, 105–132 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Emmett, M.L. Minion, Efficient Implementation of a Multi-Level Parallel in Time Algorithm. Domain Decomposition Methods in Science and Engineering XXI, Lecture Notes in Computational Science and Engineering, vol. 98 (Springer, Switzerland, 2014), pp. 359–366

    Google Scholar 

  7. J. Huang, J. Jia, M. Minion, Accelerating the convergence of spectral deferred correction methods. J. Comput. Phys. 214(2), 633–656 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Layton, M. Minion, Conservative multi-implicit spectral deferred correction methods for reacting gas dynamics. J. Comput. Phys. 194(2), 697–715 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. J.-L. Lions, Y. Maday, G. Turinici, A “parareal” in time discretization of PDE’s. C. R. l’Académie Sci. Math. 332, 661–668 (2001)

    MathSciNet  MATH  Google Scholar 

  10. M. Minion, Semi-implicit spectral deferred correction methods for ordinary differential equations. Commun. Math. Sci. 1(3), 471–500 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Minion, A hybrid parareal spectral deferred corrections method. Commun. Appl. Math. Comput. Sci. 5(2), 265–301 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. C. Oosterlee, T. Washio, On the use of multigrid as a preconditioner, in Proceedings of 9th International Conference on Domain Decomposition Methods, pp. 441–448 (1996)

    Google Scholar 

  13. D. Ruprecht, R. Speck, M. Emmett, M. Bolten, R. Krause, Poster: Extreme-scale space-time parallelism, in Proceedings of the 2013 Supercomputing Companion, SC ‘13 Companion, 2013

    Google Scholar 

  14. R. Speck, D. Ruprecht, M. Emmett, M. Bolten, R. Krause. A space-time parallel solver for the three-dimensional heat equation. in Parallel Computing: Accelerating Computational Science and Engineering (CSE), Advances in Parallel Computing, vol. 25 (IOS Press, 2014), pp. 263–272. doi:10.3233/978-1-61499-381-0-263

    Google Scholar 

  15. R. Speck, D. Ruprecht, M. Emmett, M. Minion, M. Bolten, R. Krause, A multi-level spectral deferred correction method. BIT Numer. Math. (2014)

    MATH  Google Scholar 

  16. W. Spotz, G. Carey, A high-order compact formulation for the 3D Poisson equation. Numer. Meth. PDEs 12(2), 235–243 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Y. Xia, Y. Xu, C.-W. Shu, Efficient time discretization for local discontinuous Galerkin methods. Disc. Cont. Dyn. Syst. 8(3), 677–693 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

This work was supported by the Swiss National Science Foundation (SNSF) under the lead agency agreement through the project “ExaSolvers” within the Priority Programme 1648 “Software for Exascale Computing” (SPPEXA) of the Deutsche Forschungsgemeinschaft (DFG). Matthew Emmett and Michael Minion were supported by the Applied Mathematics Program of the DOE Office of Advanced Scientific Computing Research under the U.S. Department of Energy under contract DE-AC02-05CH11231. Michael Minion was also supported by the U.S. National Science Foundation grant DMS-1217080. The authors acknowledge support from Matthias Bolten, who provided the employed multigrid solver.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Speck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Speck, R., Ruprecht, D., Minion, M., Emmett, M., Krause, R. (2016). Inexact Spectral Deferred Corrections. In: Dickopf, T., Gander, M., Halpern, L., Krause, R., Pavarino, L. (eds) Domain Decomposition Methods in Science and Engineering XXII. Lecture Notes in Computational Science and Engineering, vol 104. Springer, Cham. https://doi.org/10.1007/978-3-319-18827-0_39

Download citation

Publish with us

Policies and ethics