Adaptive Coarse Spaces for BDDC with a Transformation of Basis

  • Axel KlawonnEmail author
  • Patrick Radtke
  • Oliver Rheinbach
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 104)


We describe a BDDC algorithm, see e.g., [1], and an adaptive coarse space enforced by a transformation of basis for the iterative solution of scalar diffusion problems with a discontinuous diffusion coefficient. The coefficient varies over several orders of magnitude both inside of the subdomains and along the interface. A related algorithm for FETI-DP with a balancing preconditioner has been already described in [6, 7]. Other adaptive coarse space constructions for FETI, FETI-DP, and BDDC methods have been proposed in [8, 10]. We also present some preliminary numerical results for different scalings, including the recent deluxe scaling; cf., [2].


Eigenvalue Problem Linear Finite Element Coarse Space Preliminary Numerical Result Nodal Finite Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    C.R. Dohrmann, A preconditioner for substructuring based on constrained energy minimization. SIAM J. Sci. Comput. 25(1), 246–258 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    C.R. Dohrmann, O.B. Widlund, Some recent tools and a BDDC algorithm for 3D problems in H(curl), in Proceedings of the 20th International Conference on Domain Decomposition Methods. Springer Lecture Notes in Computational Science and Engineering, vol. 95 (Springer, Heidelberg, 2013)Google Scholar
  3. 3.
    V. Dolean, F. Nataf, R. Scheichl, N. Spillane, Analysis of a two-level Schwarz method with coarse spaces based on local Dirichlet-to-Neumann maps. Comput. Methods Appl. Math. 12(4), 391–414 (2012) [ISSN 1609-4840]Google Scholar
  4. 4.
    J. Galvis, Y. Efendiev, Domain decomposition preconditioners for multiscale flows in high contrast media: reduced dimension coarse spaces. Multiscale Model. Simul. 8(5), 1621–1644 (2010) [ISSN 1540-3459]Google Scholar
  5. 5.
    A. Klawonn, L.F. Pavarino, O. Rheinbach, Spectral element FETI-DP and BDDC preconditioners with multi-element subdomains. Comput. Meth. Appl. Mech. Eng. 198(3), 511–523 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    A. Klawonn, M. Lanser, P. Radtke, O. Rheinbach, Nonlinear domain decomposition and an adaptive coarse space, in Proceedings of the 21st International Conference on Domain Decomposition Methods. Springer Lecture Notes in Computational Science and Engineering, Rennes, 25–29 June 2012 (2013a)Google Scholar
  7. 7.
    A. Klawonn, P. Radtke, O. Rheinbach, FETI-DP methods with an adaptive coarse space. SIAM J. Numer. Anal. 53(1), 297–320 (2015) [ISSN 0036-1429]. doi:10.1137/130939675.
  8. 8.
    J. Mandel, B. Sousedík, Adaptive selection of face coarse degrees of freedom in the BDDC and the FETI-DP iterative substructuring methods. Comput. Methods Appl. Mech. Eng. 196, 1389–1399 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    C. Pechstein, R. Scheichl, Weighted Poincaré inequalities. IMA J. Numer. Anal. 33(2), 652–686 (2013) [ISSN 0272-4979]Google Scholar
  10. 10.
    N. Spillane, D.J. Rixen. Automatic spectral coarse spaces for robust finite element tearing and interconnecting and balanced domain decomposition algorithms. Int. J. Numer. Meth. Eng. 95, 953–990 (2013) [ISSN 0029-5981]Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Axel Klawonn
    • 1
    Email author
  • Patrick Radtke
    • 1
  • Oliver Rheinbach
    • 2
  1. 1.Mathematisches InstitutUniversität zu KölnKölnGermany
  2. 2.Fakultät für Mathematik und InformatusInstitut für Numerische Mathematik und Optimierung, Technical Universität Bergakademie FreibergFreibergGermany

Personalised recommendations