A Newton-Krylov-FETI-DP Method with an Adaptive Coarse Space Applied to Elastoplasticity

  • Axel Klawonn
  • Patrick RadtkeEmail author
  • Oliver Rheinbach
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 104)


A Newton-Krylov-FETI-DP method for solving problems in elastoplasticity is considered. In some cases additional coarse constraints are necessary to guarantee good convergence of the pcg algorithm. To enhance the coarse space in the FETI-DP method, we use a strategy introduced in Mandel and Sousedík (Comput. Methods Appl. Mech. Eng. 196, 1389–1399, 2007). We implement this method using a deflation approach.


Coarse Space Linear Elliptic Problem Preconditioned Conjugate Gradient Algorithm Tension Tensor Root Finding Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    C. Carstensen, R. Klose, Elastoviscoplastic finite element analysis in 100 lines of Matlab. J. Numer. Math. 10(3), 157–192 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    C. Farhat, M. Lesoinne, P. LeTallec, K. Pierson, D. Rixen, FETI-DP: a dual-primal unified FETI method, I. A faster alternative to the two-level FETI method. Int. J. Numer. Methods Eng. 50(7), 1523–1544 (2001)MathSciNetzbMATHGoogle Scholar
  3. 3.
    S. Gippert, A. Klawonn, O. Rheinbach, Analysis of FETI-DP and BDDC for linear elasticity in 3D with almost incompressible components and varying coefficients inside subdomains. SIAM J. Numer. Anal. 50(5), 2208–2236 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    W. Han, B. Daya Reddy, in Plasticity. Mathematical Theory and Numerical Analysis, 2nd edn. Interdisciplinary Applied Mathematics, vol. 9 (Springer, New York, 2013).Google Scholar
  5. 5.
    C.T. Kelley, in Iterative Methods for Linear and Nonlinear Equations. Frontiers in Applied Mathematics, vol. 16 (Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1995)Google Scholar
  6. 6.
    A. Klawonn, O. Rheinbach, Deflation, projector preconditioning, and balancing in iterative substructuring methods: connections and new results. SIAM J. Sci. Comput. 34(1), A459–A484 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    A. Klawonn, O.B. Widlund, M. Dryja, Dual-primal FETI methods for three-dimensional elliptic problems with heterogeneous coefficients. SIAM J. Numer. Anal. 40, 159–179 (2002) (electronic)Google Scholar
  8. 8.
    A. Klawonn, O. Rheinbach, O.B. Widlund, An analysis of a FETI-DP algorithm on irregular subdomains in the plane. SIAM J. Numer. Anal. 46(5), 2484–2504 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    J. Mandel, B. Sousedík, Adaptive selection of face coarse degrees of freedom in the BDDC and the FETI-DP iterative substructuring methods. Comput. Methods Appl. Mech. Eng. 196(8), 1389–1399 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    J.C. Simo, T.J.R. Hughes, in Computational Inelasticity. Interdisciplinary Applied Mathematics, vol. 7 (Springer, New York, 1998)Google Scholar
  11. 11.
    A. Toselli, O. Widlund, in Domain Decomposition Methods—Algorithms and Theory. Springer Series in Computational Mathematics, vol. 34 (Springer, Berlin, 2005)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Axel Klawonn
    • 1
  • Patrick Radtke
    • 1
    Email author
  • Oliver Rheinbach
    • 2
  1. 1.Mathematisches InstitutUniversität zu KölnKölnGermany
  2. 2.Fakultät für Mathematik und Informatus, Institut für Numerische Mathematik und OptimierungTechnical Universität Bergakademie FreibergFreibergGermany

Personalised recommendations