Domain Decomposition and Parallel Direct Solvers as an Adaptive Multiscale Strategy for Damage Simulation in Quasi-Brittle Materials

  • Frank P. X. EverdijEmail author
  • Oriol Lloberas-Valls
  • Angelo Simone
  • Daniel J. Rixen
  • Lambertus J. Sluys
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 104)


We employ domain decomposition to 2D systems representing concrete-like materials by describing the material across multiple scales with different models and meshes. This enables us to perform failure mechanics using nonlinear material models such as the gradient-enhanced damage (GD) model. Early results of classical FETI show that heterogeneous materials combined with the GD model necessitates new developments in preconditioners for solving the interface problem iteratively. Alternatively, recent advancements in parallel direct solvers and the ubiquity of computer memory enables solving domain decomposition problems through the fully assembled matrix. Speed and memory usage of various solvers will be presented.


Domain Decomposition Damage Evolution Iterative Solver Interface Transition Zone Full Numerical Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    P.R. Amestoy, I.S. Duff, J. Koster, J.-Y. L’Excellent, A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. A 23(1), 15–41 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    P.R. Amestoy, A. Guermouche, J.-Y. L’Excellent, S. Pralet, Hybrid scheduling for the parallel solution of linear systems. Parallel Comput. 32(2), 136–156 (2006)MathSciNetCrossRefGoogle Scholar
  3. 3.
    T.A. Davis, Algorithm 832: UMFPACK, an unsymmetric-pattern multifrontal method. ACM Trans. Math. Softw. 30(2), 196–199 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    T.A. Davis, Algorithm 915: SuiteSparseQR: multifrontal multithreaded rank-revealing sparse QR factorization. ACM Trans. Math. Softw. 38(1), 8:1–8:22 (2011)Google Scholar
  5. 5.
    J.W. Demmel, J.R. Gilbert, X.S. Li, An asynchronous parallel supernodal algorithm for sparse gaussian elimination. SIAM J. Matrix Anal. A 20(4), 915–952 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Z. Dostál, D. Horák, R. Kučera, Total FETI—an easier implementable variant of the FETI method for numerical solution of elliptic PDE. Commun. Numer. Methods Eng. 22(12), 1155–1162 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    C. Farhat, F.-X. Roux, A method of finite element tearing and interconnecting and its parallel solution algorithm. Int. J. Numer. Methods Eng. 32(6), 1205–1227 (1991)CrossRefzbMATHGoogle Scholar
  8. 8.
    A. Gupta, A shared- and distributed-memory parallel sparse direct solver, in Proceedings of the 7th International Conference on Applied Parallel Computing: State of the Art in Scientific Computing, PARA’04 (Springer, Berlin/Heidelberg, 2006), pp. 778–787CrossRefGoogle Scholar
  9. 9.
    P. Hénon, P. Ramet, J. Roman, PaStiX: a high-performance parallel direct solver for sparse symmetric definite systems. Parallel Comput. 28(2), 301–321 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    X.S. Li, An overview of SuperLU: algorithms, implementation, and user interface. ACM Trans. Math. Softw. 31(3), 302–325 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    X.S. Li, J.W. Demmel, J.R. Gilbert, L. Grigori, M. Shao, I. Yamazaki. SuperLU users’ guide. Technical Report LBNL-44289, Lawrence Berkeley National Laboratory (1999), Last update: August 2011
  12. 12.
    O. Lloberas-Valls, D.J. Rixen, A. Simone, L.J. Sluys, Domain decomposition techniques for the efficient modeling of brittle heterogeneous materials. Comput. Methods Appl. Mech. Eng. 200(13–16), 1577–1590 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    O. Lloberas-Valls, D.J. Rixen, A. Simone, L.J. Sluys, Multiscale domain decomposition analysis of quasi-brittle heterogeneous materials. Int. J. Numer. Methods Eng. 89(11), 1337–1366 (2012a)Google Scholar
  14. 14.
    O. Lloberas-Valls, D.J. Rixen, A. Simone, L.J. Sluys, On micro-to-macro connections in domain decomposition multiscale methods. Comput. Methods Appl. Mech. Eng. 225–228, 177–196 (2012b)Google Scholar
  15. 15.
    R.H.J. Peerlings, R. de Borst, W.A.M. Brekelmans, J.H.P. de Vree, Gradient enhanced damage for quasi-brittle materials. Int. J. Numer. Methods Eng. 39(19), 3391–3403 (1996)CrossRefzbMATHGoogle Scholar
  16. 16.
    D.J. Rixen, C. Farhat, A simple and efficient extension of a class of substructure based preconditioners to heterogeneous structural mechanics problems. Int. J. Numer. Methods Eng. 44(4), 489–516 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Y. Saad, M. Schultz, Gmres: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7(3), 856–869 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    O. Schenk, K. Gärtner, W. Fichtner, A. Stricker, PARDISO: a high-performance serial and parallel sparse linear solver in semiconductor device simulation. Futur. Gener. Comput. Syst. 18(1), 69–78 (2001)CrossRefzbMATHGoogle Scholar
  19. 19.
    N. Spillane, D.J. Rixen, Automatic spectral coarse spaces for robust finite element tearing and interconnecting and balanced domain decomposition algorithms. Int. J. Numer. Methods Eng. 95(11), 953–990 (2013)MathSciNetCrossRefGoogle Scholar
  20. 20.
    H. van der Vorst, Bi-cgstab: a fast and smoothly converging variant of bi-cg for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13(2), 631–644 (1992)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Frank P. X. Everdij
    • 1
    Email author
  • Oriol Lloberas-Valls
    • 2
  • Angelo Simone
    • 1
  • Daniel J. Rixen
    • 3
  • Lambertus J. Sluys
    • 1
  1. 1.Faculty of Civil Engineering and GeosciencesDelft University of TechnologyDelftThe Netherlands
  2. 2.International Center for Numerical Methods in Engineering (CIMNE)BarcelonaSpain
  3. 3.Faculty of Mechanical EngineeringTechnische Universität MünchenGarchingGermany

Personalised recommendations