Skip to main content

Domain Decomposition and Parallel Direct Solvers as an Adaptive Multiscale Strategy for Damage Simulation in Quasi-Brittle Materials

  • Conference paper
Domain Decomposition Methods in Science and Engineering XXII

Abstract

We employ domain decomposition to 2D systems representing concrete-like materials by describing the material across multiple scales with different models and meshes. This enables us to perform failure mechanics using nonlinear material models such as the gradient-enhanced damage (GD) model. Early results of classical FETI show that heterogeneous materials combined with the GD model necessitates new developments in preconditioners for solving the interface problem iteratively. Alternatively, recent advancements in parallel direct solvers and the ubiquity of computer memory enables solving domain decomposition problems through the fully assembled matrix. Speed and memory usage of various solvers will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P.R. Amestoy, I.S. Duff, J. Koster, J.-Y. L’Excellent, A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. A 23(1), 15–41 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. P.R. Amestoy, A. Guermouche, J.-Y. L’Excellent, S. Pralet, Hybrid scheduling for the parallel solution of linear systems. Parallel Comput. 32(2), 136–156 (2006)

    Article  MathSciNet  Google Scholar 

  3. T.A. Davis, Algorithm 832: UMFPACK, an unsymmetric-pattern multifrontal method. ACM Trans. Math. Softw. 30(2), 196–199 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. T.A. Davis, Algorithm 915: SuiteSparseQR: multifrontal multithreaded rank-revealing sparse QR factorization. ACM Trans. Math. Softw. 38(1), 8:1–8:22 (2011)

    Google Scholar 

  5. J.W. Demmel, J.R. Gilbert, X.S. Li, An asynchronous parallel supernodal algorithm for sparse gaussian elimination. SIAM J. Matrix Anal. A 20(4), 915–952 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Z. Dostál, D. Horák, R. Kučera, Total FETI—an easier implementable variant of the FETI method for numerical solution of elliptic PDE. Commun. Numer. Methods Eng. 22(12), 1155–1162 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. C. Farhat, F.-X. Roux, A method of finite element tearing and interconnecting and its parallel solution algorithm. Int. J. Numer. Methods Eng. 32(6), 1205–1227 (1991)

    Article  MATH  Google Scholar 

  8. A. Gupta, A shared- and distributed-memory parallel sparse direct solver, in Proceedings of the 7th International Conference on Applied Parallel Computing: State of the Art in Scientific Computing, PARA’04 (Springer, Berlin/Heidelberg, 2006), pp. 778–787

    Book  Google Scholar 

  9. P. Hénon, P. Ramet, J. Roman, PaStiX: a high-performance parallel direct solver for sparse symmetric definite systems. Parallel Comput. 28(2), 301–321 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. X.S. Li, An overview of SuperLU: algorithms, implementation, and user interface. ACM Trans. Math. Softw. 31(3), 302–325 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. X.S. Li, J.W. Demmel, J.R. Gilbert, L. Grigori, M. Shao, I. Yamazaki. SuperLU users’ guide. Technical Report LBNL-44289, Lawrence Berkeley National Laboratory (1999), http://www.crd.lbl.gov/~xiaoye/SuperLU/. Last update: August 2011

  12. O. Lloberas-Valls, D.J. Rixen, A. Simone, L.J. Sluys, Domain decomposition techniques for the efficient modeling of brittle heterogeneous materials. Comput. Methods Appl. Mech. Eng. 200(13–16), 1577–1590 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. O. Lloberas-Valls, D.J. Rixen, A. Simone, L.J. Sluys, Multiscale domain decomposition analysis of quasi-brittle heterogeneous materials. Int. J. Numer. Methods Eng. 89(11), 1337–1366 (2012a)

    Google Scholar 

  14. O. Lloberas-Valls, D.J. Rixen, A. Simone, L.J. Sluys, On micro-to-macro connections in domain decomposition multiscale methods. Comput. Methods Appl. Mech. Eng. 225–228, 177–196 (2012b)

    Google Scholar 

  15. R.H.J. Peerlings, R. de Borst, W.A.M. Brekelmans, J.H.P. de Vree, Gradient enhanced damage for quasi-brittle materials. Int. J. Numer. Methods Eng. 39(19), 3391–3403 (1996)

    Article  MATH  Google Scholar 

  16. D.J. Rixen, C. Farhat, A simple and efficient extension of a class of substructure based preconditioners to heterogeneous structural mechanics problems. Int. J. Numer. Methods Eng. 44(4), 489–516 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Y. Saad, M. Schultz, Gmres: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7(3), 856–869 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  18. O. Schenk, K. Gärtner, W. Fichtner, A. Stricker, PARDISO: a high-performance serial and parallel sparse linear solver in semiconductor device simulation. Futur. Gener. Comput. Syst. 18(1), 69–78 (2001)

    Article  MATH  Google Scholar 

  19. N. Spillane, D.J. Rixen, Automatic spectral coarse spaces for robust finite element tearing and interconnecting and balanced domain decomposition algorithms. Int. J. Numer. Methods Eng. 95(11), 953–990 (2013)

    Article  MathSciNet  Google Scholar 

  20. H. van der Vorst, Bi-cgstab: a fast and smoothly converging variant of bi-cg for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13(2), 631–644 (1992)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank P. X. Everdij .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Everdij, F.P.X., Lloberas-Valls, O., Simone, A., Rixen, D.J., Sluys, L.J. (2016). Domain Decomposition and Parallel Direct Solvers as an Adaptive Multiscale Strategy for Damage Simulation in Quasi-Brittle Materials. In: Dickopf, T., Gander, M., Halpern, L., Krause, R., Pavarino, L. (eds) Domain Decomposition Methods in Science and Engineering XXII. Lecture Notes in Computational Science and Engineering, vol 104. Springer, Cham. https://doi.org/10.1007/978-3-319-18827-0_18

Download citation

Publish with us

Policies and ethics