Advertisement

Isogeometric Overlapping Additive Schwarz Solvers for the Bidomain System

  • Lara Antonella CharawiEmail author
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 104)

Abstract

The electrical activity of the heart is a complex phenomenon strictly related to its physiology, fiber structure and anatomy.

Keywords

Isogeometric Analysis Coarse Space Bidomain Model NURBS Basis Function Additive Schwarz Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    U.M. Ascher, S.J. Ruuth, B.T.R. Wetton, Implicit-explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal. 32(3), 797–823 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    L. Beirão da Veiga, D. Cho, L.F. Pavarino, S. Scacchi, Overlapping Schwarz methods for isogeometric analysis. SIAM J. Numer. Anal. 50(3), 1394–1416 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    L.A. Charawi, Isogeometric overlapping Schwarz preconditioners in computational electrocardiology. Ph.D. thesis, Università degli Studi di Milano, 2014Google Scholar
  4. 4.
    P. Colli Franzone, L.F. Pavarino, B. Taccardi, Simulating patterns of excitation, repolarization and action potential duration with cardiac bidomain and monodomain models. Math. Biosci. 197(1), 35–66 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    J.A. Cottrell, T.J.R. Hughes, Y. Bazilevs, Isogeometric Analysis: Toward Integration of CAD and FEA (Wiley, Chichester, 2009)CrossRefGoogle Scholar
  6. 6.
    C. De Falco, A. Reali, R. Vázquez, GeoPDEs: a research tool for isogeometric analysis of pdes. Adv. Eng. Softw. 42(12), 1020–1034 (2011)CrossRefzbMATHGoogle Scholar
  7. 7.
    T.J.R. Hughes, J.A. Cottrell, Y. Bazilevs, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194 (39), 4135–4195 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    I.J. LeGrice, B.H. Smaill, L.Z. Chai, S.G. Edgar, J.B. Gavin, P.J. Hunter, Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog. Am. J. Physiol-Heart C 269(2), H571–H582 (1995)Google Scholar
  9. 9.
    C.-H. Luo, Y. Rudy, A model of the ventricular cardiac action potential, depolarization, repolarization, and their interaction. Circ. Res. 68(6), 1501–1526 (1991)CrossRefGoogle Scholar
  10. 10.
    L.F. Pavarino, S. Scacchi, Multilevel additive Schwarz preconditioners for the bidomain reaction-diffusion system. SIAM J. Sci. Comput. 31(1), 420–445 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    L.F. Pavarino, S. Scacchi, Parallel multilevel Schwarz and block preconditioners for the Bidomain parabolic-parabolic and parabolic-elliptic formulations. SIAM J. Sci. Comput. 33(4), 1897–1919 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    M. Pennacchio, G. Savaré, P. Colli Franzone, Multiscale modeling for the bioelectric activity of the heart. SIAM J. Math. Anal. 37(4), 1333–1370 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    S. Rush, H. Larsen, A practical algorithm for solving dynamic membrane equations. IEEE Trans. Biomed. Eng. 25(4), 389–392 (1978)CrossRefGoogle Scholar
  14. 14.
    N.P. Smith, D.P. Nickerson, E.J. Crampin, P.J. Hunter, Multiscale computational modelling of the heart. Acta Numer. 13(1), 371–431 (2004)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of MathematicsUniversità di PaviaPaviaItaly

Personalised recommendations