Skip to main content

Complexity of Conjugacy, Factoring and Embedding for Countable Sofic Shifts of Rank 2

  • Conference paper
  • First Online:
Cellular Automata and Discrete Complex Systems (AUTOMATA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8996))

  • 392 Accesses

Abstract

In this article, we study countable sofic shifts of Cantor-Bendixson rank at most 2. We prove that their conjugacy problem is complete for \(\mathsf {GI}\), the complexity class of graph isomorphism, and that the existence problems of block maps, factor maps and embeddings are \(\mathsf {NP}\)-complete.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    There is a common period \(p \in \mathbb {N}\) for the configurations in \(Y\), and if this period breaks infinitely many times in the right tail of \(x\), then \(X_i^R\) is not contained in \(Y\).

  2. 2.

    From Proposition 2, one can extract that in the rank \(1\) case, conjugacy of edge shifts is equivalent to the graphs defining them being isomorphic.

References

  1. Ballier, A., Durand, B., Jeandel, E.: Structural aspects of tilings. In: Weil, P., Albers, S. (eds.) Proceedings of the 25th Annual Symposium on the Theoretical Aspects of Computer Science, Bordeaux, France, pp. 61–72. IBFI Schloss Dagstuhl, February 2008

    Google Scholar 

  2. Ballier, A., Jeandel, E.: Structuring multi-dimensional subshifts. ArXiv e-prints, September 2013

    Google Scholar 

  3. Biedl, T.: The complexity of domino tiling. In: Proceedings of the 17th Canadian Conference on Computational Geometry, pp. 187–190 (2005)

    Google Scholar 

  4. Boyle, M.: Open problems in symbolic dynamics. In: Geometric and Probabilistic Structures in Dynamics. Contemp. Math., vol. 469, pp. 69–118. Amer. Math. Soc., Providence (2008)

    Google Scholar 

  5. Gibbons, A.: Algorithmic Graph Theory. Cambridge University Press, Cambridge (1985)

    MATH  Google Scholar 

  6. Hell, P., Nešetřil, J.: On the complexity of \(H\)-coloring. J. Combin. Theory Ser. B 48(1), 92–110 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  7. Jeandel, E., Vanier, P.: Hardness of conjugacy and factorization of multidimensional subshifts of finite type. CoRR, abs/1204.4988 (2012)

    Google Scholar 

  8. Kannan, S., Sweedyk, E., Mahaney, S.: Counting and random generation of strings in regular languages. In: Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms (San Francisco, CA, 1995), pp. 551–557. ACM, New York (1995)

    Google Scholar 

  9. Lind, D., Marcus, B.: An introduction to symbolic dynamics and coding. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  10. Pavlov, R., Schraudner, M.: Classification of sofic projective subdynamics of multidimensional shifts of finite type (submitted)

    Google Scholar 

  11. Salo, V., Törmä, I.: Computational aspects of cellular automata on countable sofic shifts. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 777–788. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  12. Salo, V., Törmä, I.: Constructions with countable subshifts of finite type. Fundamenta Informaticae 126(2–3), 263–300 (2013)

    MathSciNet  MATH  Google Scholar 

  13. Vikas, N.: Computational complexity of graph compaction. ProQuest LLC, Ann Arbor (1997). Thesis (Ph.D.)-Simon Fraser University (Canada)

    Google Scholar 

  14. Zemlyachenko, V.N., Korneenko, N.M., Tyshkevich, R.I.: The graph isomorphism problem. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 118, 83–158, 215 (1982). The theory of the complexity of computations, I

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilkka Törmä .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Salo, V., Törmä, I. (2015). Complexity of Conjugacy, Factoring and Embedding for Countable Sofic Shifts of Rank 2. In: Isokawa, T., Imai, K., Matsui, N., Peper, F., Umeo, H. (eds) Cellular Automata and Discrete Complex Systems. AUTOMATA 2014. Lecture Notes in Computer Science(), vol 8996. Springer, Cham. https://doi.org/10.1007/978-3-319-18812-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18812-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18811-9

  • Online ISBN: 978-3-319-18812-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics