Mineralogical Composition of Pegmatites and Aplites in the NE Bavarian Basement

  • Harald G. Dill
Part of the Modern Approaches in Solid Earth Sciences book series (MASE, volume 15)


The mineralogy of the pegmatites and aplites along the western edge of the Bohemian Massif cannot be sidelined. More than 250 minerals known from the most prominent members of these pegmatites and 272 species have been dealt with in this chapter. The minerals are treated irrespective of their siting within the Dana- or Strunz crystallographic systems and were grouped and discussed in accordance with the genetic evolution of the HPPP: Feldspar group, silica group, garnet s.s.s., aluminum silicates and corundum, zircon, phyllosilicates, niobium-, tantalum, tungsten and tin oxides, titanium minerals, molybdenite, carbon, calcium phosphates and calcium carbonates, aluminum phosphates with magnesium, iron, calcium and manganese, iron phosphates with magnesium, potassium and sodium, iron-manganese phosphates with magnesium, calcium, strontium, barium, potassium and sodium, manganese phosphates with calcium, manganese and iron oxides, sulfides and carbonates, arsenic minerals, bismuth minerals, copper minerals, halides, lithium minerals, rare earth element minerals, scandium minerals, beryllium minerals, boron silicates, uranium minerals, barium, lead, silver and antimony minerals, zinc minerals. The minerals were discussed as to their role as marker minerals or mineral associations to constrain the physical-chemical regime. They are used to unravel the pathway of their major elements from the source to the depocenter. Last but not least they play a vital role for mineralogical correlation and for the establishment of a minerostratigraphy within the HPPP and also across its boundaries. Some mineral groups play an outstanding role as to discrimination of the metamorphic and magmatic influence on the pegmatite evolution (columbite-tantalite s.s.s, zircon morphology). They can be applied for the depth zonation during the initial phases of the pegmatite’s emplacement (phosphate vs. garnet) and during the alteration (Fe phosphate). K-Mn oxides and uranyl phosphates are key minerals for the chronological dating of the supergene alteration of the pegmatites. One phyllosilicate has been paid too little attention to during the recent past. Kaolinite group minerals bridge the gap between hydrothermal and supergene alteration. A diagnostic group is the “nigrine” mineral association which has derived from different parts of the roof rocks of the pegmatites and which can be found today in the stream sediments of the drainage systems intersecting the HPPP pegmatites.


Aplite Physical-chemical Regime Nigrini Supergene Alteration Uranyl Phosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adiwidjana G, Friese K, Klaska KH, Schlüter J (1999) The crystal structure of kastningite (Mn, Fe, Mg)(H2O)4[Al2(OH)2(H2O)2(PO4)2]⋅2H2O – a new hydroxyl aquated orthophosphate hydrate mineral. Z Krist 214:465–468Google Scholar
  2. Aleksandrov VB (1963) Isomorphism of cations in titaniferous tantalo-niobates of composition AB2X6. Doklady Akademia Nauk 153:672–675 (English translation 129-131)Google Scholar
  3. Alfonso P, Melgarejo JC, Yusta I, Velasco F (2003) Geochemistry of feldspars and muscovite in granitic pegmatite from the Cap de Creus Field, Catalonia, Spain. Can Mineral 41:103–116CrossRefGoogle Scholar
  4. Armbruster T, Bonazzi P, Akasak M, Bermanec V, Chopin C, Giere R, Heuss-Assbichler S, Liebscher A, Menchetti S, Pan Y, Pasero M (2006) Recommended nomenclature of epidote-group minerals. Eur J Mineral 18:551–567CrossRefGoogle Scholar
  5. Baldwin JR, Hill PG, von Knorring O, Oliver GJH (2000) Exotic aluminum phosphates, natromontebrasite, brazilianite, goyazite, gorceixite, and crandallite from rare-element pegmatites in Namibia. Mineral Mag 67:1147–1164CrossRefGoogle Scholar
  6. Barton MD (1986) Phase equilibria and thermodynamic properties of minerals in the BeO-AI, O,-SiO,-H, O (BASH) system, with petrological applications. Am Mineral 71:277–300Google Scholar
  7. Batchelor R, Kinnaird J (1984) Gahnite compositions compared. Mineral Mag 48:425–429CrossRefGoogle Scholar
  8. Baumgärtner J, Zoback MD (1989) Interpretation of hydraulic fracturing pressure-time records using interactive analysis methods. Int J Rock Mech Min Sci Geomech Abstr 26:461–469CrossRefGoogle Scholar
  9. Bayerisches Staatsministerium für Wirtschaft und Verkehr (1978) Rohstoffprogramm für Bayern. Bayerisches geologisches Landesamt, München, 129 ppGoogle Scholar
  10. Benisek A, Finger F (1993) Factors controlling the development of prism faces in granite zircons: a microprobe study. Contrib Mineral Petrol 114:441–451CrossRefGoogle Scholar
  11. Beran P, Sekora J (2006) The Krásno Sn-W ore district, near Horní Slavko: mining history, geological and mineralogical characteristics. J Czech Geol Soc 51:3–187Google Scholar
  12. Berger EL, Lauretta DS, Keller LP (2012) The thermodynamic properties of cubanite 75th annual Meteoritical Society meeting, 5008Google Scholar
  13. Bigham JM, Schwertmann U, Traina SJ, Winland RL, Wolf M (1996) Schwertmannite and the chemical modeling of iron in acid sulfate waters. Geochim Cosmochim Acta 60:185–195CrossRefGoogle Scholar
  14. Bilal E, Horn AH, de Mello FM (2012) P-Li-Be Bearing Pegmatites of the South East Brazil. Int J Geosci 3:281–288CrossRefGoogle Scholar
  15. Bingen B, Davis WJ, Austrheim H (2001) Zircon U-Pb geochronology in the Bergen arc eclogites and their Proterozoic protoliths, and implications for the pre-Scandian evolution of the Caledonides in western Norway. Geol Soc Am Bull 113:640–649CrossRefGoogle Scholar
  16. Birch WD, Grey IE, Mills SJ, Pring A, Bougero C, Ribaldi-Tunnicliffe A, Wilson NC, Keck E (2011) Nordgauite, MnAl2(PO4)2(F, OH)2. 5H2O, a new mineral from the Hagendorf-Süd pegmatite, Bavaria, Germany: description and crystal structure. Mineral Mag 75:269–278CrossRefGoogle Scholar
  17. Bohlen SR, Montana A, Kerrick DM (1991) Precise determinations of the equilibria kyanite ¼ sillimanite and kyanite ¼ andalusite and a revised triple point for Al2SiO5 polymorphs. Am Mineral 76:677–680Google Scholar
  18. Bossart PJ, Meier M, Oberli F, Steiger RH (1986) Morphology versus U-Pb systematics in zircon: a high-resolution isotopic study of a zircon population from a Variscan dyke in the Central Alps. Earth Planet Sci Lett 78:339–354CrossRefGoogle Scholar
  19. Braithwaite RSW, Cooper BV (1982) Childrenite in south-west England. Mineral Mag 46:119–126CrossRefGoogle Scholar
  20. Bromiley G, Hilaret N (2005) Hydrogen and minor element incorporation in synthetic rutile. Mineral Mag 69:345–358CrossRefGoogle Scholar
  21. Brooker EJ, Nuffield EW (1952) Studies of radioactive compounds IV, Pitchblende from lake Athabaska. Am Mineral 37:363–385Google Scholar
  22. Brunet F, Morineau D, Schmid-Beurmann P (2004) Heat-capacity of lazulite MgAl2(PO4(OH)2, from 35 to 300K and a (S-V) value for P2O5 to estimate phosphate entropy. Min Mag 68:123–134CrossRefGoogle Scholar
  23. Cairney T, Kerr CD (1998) The geology of the Kabwe area: explanation of degree sheet 1428, NW quarter. Geol Surv Zamb Rep 47:1–40Google Scholar
  24. Carl C, Dill HG (1984) U-Pb Datierungen an Pechblenden aus dem Nabburg-Wölsendorfer Flussspatrevier. Geol Jahrb D 63:59–76Google Scholar
  25. Carl C, Dill HG, Kreuzer H, Wendt I (1985) U/ Pb- und K/ Ar-Datierungen des Uranvorkommens Höhenstein Oberpfalz. Geol Rundsch/Int J Earth Sci 74:483–504Google Scholar
  26. Černý P (1989) Exploration strategy and methods for pegmatite deposits of tantalum. In: Möller P, Cerný P, Saupé F (eds) Lanthanides, tantalum and niobium. Springer, Heidelberg, pp 274–310CrossRefGoogle Scholar
  27. Černý P (1991) Rare-element granitic pegmatites: Part I: Anatomy and internal evolution of pegmatite deposits. Part II: Regional and global environments and petrogenesis. Geosci Can 18:49–81Google Scholar
  28. Černý P (1992) Geochemical and petrogenetic features of mineralization in rare-element granitic pegmatites in the light of current research. Appl Geochem 7:393–416CrossRefGoogle Scholar
  29. Černý P (2002) Mineralogy of beryllium in granitic pegmatites. Rev Mineral Geochem 50:405–444CrossRefGoogle Scholar
  30. Černý P, Ercit TS (2005) The classification of granitic pegmatites revisited. Can Mineral 43:2005–2026CrossRefGoogle Scholar
  31. Černý P, Meintzer RE, Anderson AJ (1985) Extreme fractionation in rare-element granitic pegmatites: selected examples of data and mechanisms. Can Mineral 23:381–421Google Scholar
  32. Černý P, Goad BE, Hawthorne FC, Chapman R (1986) Fractionation trends of the Nb-and Ta-bearing oxide minerals in the Greer Lake pegmatitic granite and its pegmatite aureole, southeastern Manitoba. Am Mineral 71:501–517Google Scholar
  33. Černý P, Chapman R, Simmons WB, Chackowsky E (1999) Niobian rutile from the McGuire granitic pegmatite, Park County, Colorado: solid solution, exsolution, and oxidation. Am Mineral 84:754–763Google Scholar
  34. Charalampides G, Ericsson T, Nord AG, Khangi F (1988) Studies of hydrothermally prepared (Fe, M),(PO4)2-sarcopsides. Neues Jb Mineral Monat 1988:324–336Google Scholar
  35. Chatterjee ND (1976) Margarite stability and compatibility relation in the system CaO-Al2O3-SiO2-H2O as a pressure-temperature indicator. Am Mineral 61:699–709Google Scholar
  36. Cherniak DJ, Watson EB (2003) Diffusion in zircon. In: Hanchar JM, Hoskin PWO (eds) Zircon, Reviews in mineralogy & geochemistry, 53. Mineralogical Society of American, Washington, DC, pp 113–143Google Scholar
  37. Chopin C, Oberti R, Camara F (2006) The arrojadite enigma: II. Compositional space, new members, and nomenclature of the group. Am Mineral 91:1260–1270CrossRefGoogle Scholar
  38. Chukanov NV (2005) Minerals of the Kerch iron-ore basin in Eastern Crimea, Mineralogical almanac, 8. Ocean Pictures Ltd, Moscow, pp 1–109Google Scholar
  39. Cota AC, Wise M A, Owens BE (2010) Textural and chemical constraints on the origin of epidote in granitic pegmatites. Northeastern Section (45th annual) and Southeastern Section (59th annual) Joint Meeting (13–16 March 2010), Session No. 65 – Booth 17, Igneous/Metamorphic Petrology and Geochemistry (Posters)Google Scholar
  40. Crane MJ, Sharpe JL, Williams PA (2001) Formation of chrysocolla and secondary copper phosphate in the highly weathered supergene zones of some Australian deposits. Rec Aust Mus 53:49–56CrossRefGoogle Scholar
  41. Cruft EF (1966) Minor elements in igneous and metamorphic apatite. Geochim Cosmochim Acta 30:375–398CrossRefGoogle Scholar
  42. Dabinett TR, Humberstone D, Leverett P, Williams PA (2008) Synthesis and stability of wroewolfeite, Cu4SO4(OH)6.2H2O. Pure Appl Chem 80:1317–1323CrossRefGoogle Scholar
  43. Dachille F, Simons PY, Roy R (1968) Pressure-temperature studies of anatase, brookite, rutile, and TiO2 (II). Am Mineral 53:1929–1939Google Scholar
  44. Demartin F, Gramaccioli CM, Pilati T, Sciesa E (1996) Sigismundite, (Ba, K, Pb) Na3 (Ca, Sr) (Fe, Mg, Mn)14 (OH)2(PO4)12, a new Ba-rich member of the arrojadite group from Spluga Valley, Italy. Can Mineral 34:827–834Google Scholar
  45. Demartin F, Gay HD, Gramaccioli CM, Pilati T (1997) Benyacarite, a new titanium-bearing phosphate mineral species from Cerro Blanco, Argentina. Can Mineral 35:707–712Google Scholar
  46. Dill HG (1982) Geologie und Mineralogie des Uranvorkommens am Höhensteinweg bei Poppenreuth (NE Bayern) – Ein Lagerstättenmodell. Geol Jahrb D 50:3–83Google Scholar
  47. Dill HG (1983a) On the formation of the vein-type uranium “yellow ores” from the Schwarzach-Area (NE-Bavaria, Germany) and on the behavior of P, As, V, and Se during supergene processes. Geol Rundsch/Int J Earth Sci 72:955–980Google Scholar
  48. Dill HG (1983b) Vein- and metasedimentary-hosted carbonaceous matter and phosphorus from NE Bavaria (F.R. Germany) and their implication on syngenetic and epigenetic uranium concentration. Neues Jb Mineral Abh 148:1–21Google Scholar
  49. Dill HG (1983c) Plutonic mobilization, sodium metasomatism, propylitic, wall rock alteration and element partitioning from Höhensteinweg uranium occurrence (Northeast Bavaria). Uranium 1:139–166Google Scholar
  50. Dill HG (1983d) Lagerstättengenetische Untersuchungen im Bereich der Uranerz-Struktur Wäldel/Mähring (NE Bayern). Geol Rundsch/Int J Earth Sci 72:229–252Google Scholar
  51. Dill HG (1985a) Die Vererzung am Westrand der Böhmischen Masse: Metallogenese in einer ensialischen Orogenzone. Geol Jahrb D 73:3–461Google Scholar
  52. Dill HG (1985b) The polymetallic and monotonous uranium parageneses- a contribution to the position of endogenous uranium mineralization at the western edge of the Bohemian Massif. Neues Jb Mineral Monat 1985:184–192Google Scholar
  53. Dill HG (1986) Fault-controlled uranium black ore mineralization from the western edge of the Bohemian Massif (NE Bavaria/F.R. Germany). In: Fuchs HD (ed) Vein-type uranium deposits, International Atomic Energy Agency. The Agency, Vienna, pp 275–291Google Scholar
  54. Dill HG (1990) Chemical basin analysis of the metalliferous “Variegated Metamorphics” of the Bodenmais ore district (F.R. of Germany). Ore Geol Rev 5:151–173CrossRefGoogle Scholar
  55. Dill HG (2001) The geology of aluminium phosphates and sulphates of the alunite supergoup: a review. Earth-Sci Rev 53:35–93CrossRefGoogle Scholar
  56. Dill HG (2007) A review of mineral resources in Malawi: with special reference to aluminium variation in mineral deposits. J Afr Earth Sci 47:153–173CrossRefGoogle Scholar
  57. Dill HG (2010) The “chessboard” classification scheme of mineral deposits: mineralogy and geology from aluminum to zirconium. Earth-Sci Rev 100:1–420CrossRefGoogle Scholar
  58. Dill HG, Weber B (2010a) Eine störungsgebundene Zinnober-Molybdänglanz-Remobilisation in Amphiboliten der ZEV westlich von Vohenstrauss. Geologische Blätter NO-Bayern 60:127–140Google Scholar
  59. Dill HG, Weber B (2010b) Accessory minerals of fluorite and their implication concerning the environment of formation (Nabburg-Wölsendorf fluorite district, SE Germany): with special reference to fetid fluorite (“Stinkspat”). Ore Geol Rev 37:65–86CrossRefGoogle Scholar
  60. Dill HG, Weber B (2010c) Variation of color, structure and morphology of fluorite and the origin of the hydrothermal F-Ba deposits at Nabburg-Wölsendorf, SE Germany. Neues Jb Mineral Abh 187:113–132CrossRefGoogle Scholar
  61. Dill HG, Weber B (2014) Die Entstehung von Blei-Zink-Kupfer-Mineralisationen in der nördlichen Oberpfalz (Nordostbayern) unter besonderer Berücksichtigung ihrer Spurenelemente. Geologische Blätter Nordost-Bayern 63:55–79Google Scholar
  62. Dill HG, Weiser T (1981) Eine Molybdän-Sulfid-Impsonit – Mineralisation aus dem Uran-Vorkommen Wäldel/Mähring (Oberpfalz). Neues Jb Mineral Monat 1981:452–458Google Scholar
  63. Dill HG, Bosse H-R, Henning K-H, Fricke A, Ahrend H (1997) Mineralogical and chemical variations in hypogene and supergene kaolin deposits in a mobile fold belt–The Central Andes of northwestern Peru. Mineral Deposita 32:149–163CrossRefGoogle Scholar
  64. Dill HG, Weber B, Fuessl M, Melcher F (2006a) The origin of the hydrous scandium phosphate kolbeckite from the Hagendorf – Pleystein pegmatite province, Germany. Mineral Mag 70:281–290CrossRefGoogle Scholar
  65. Dill HG, Melcher F, Fuessl M, Weber B (2006b) Accessory minerals in cassiterite: a tool for provenance and environmental analyses of colluvial-fluvial placer deposits (NE Bavaria, Germany). Sediment Geol 191:171–189CrossRefGoogle Scholar
  66. Dill HG, Khishigsuren S, Majigsuren Y, Myagmarsuren S, Bulgamaa J, Hongor O (2006c) A review of industrial minerals of Mongolia: the impact of geological and geographical factors on their formation and use. Int Geol Rev 48:129–170CrossRefGoogle Scholar
  67. Dill HG, Fuessl M, Botz R (2007a) Mineralogy and (economic) geology of zeolite-carbonate mineralization in basic igneous rocks of the Troodos Complex, Cyprus. Neues Jb Mineral Abh 183:251–268CrossRefGoogle Scholar
  68. Dill HG, Melcher F, Fuessl M, Weber B (2007b) The origin of rutile-ilmenite aggregates (“nigrine”) in alluvial-fluvial placers of the Hagendorf pegmatite province, NE Bavaria, Germany. Mineral Petrol 89:133–158CrossRefGoogle Scholar
  69. Dill HG, Gerdes A, Weber B (2007c) Cu-Fe-U phosphate mineralization of the Hagendorf-Pleystein pegmatite province, Germany: with special reference to Laser-Ablation-Inductive-Coupled-Plasma Mass Spectrometry (LA-ICP-MS) of iron-cored torbernite. Mineral Mag 71:371–387CrossRefGoogle Scholar
  70. Dill HG, Sachsenhofer RF, Grecula P, Sasvári T, Palinkaš LA, Borojević-Šoštarić S, Strmić-Palinkaš S, Prochaska W, Garuti G, Zaccarini F, Arbouille D, Schulz H-M (2008a) Fossil fuels, ore – and industrial minerals. In: McCann T (ed) Geology of Central Europe, Special publication. Geological Society of London, London, pp 1341–1449Google Scholar
  71. Dill HG, Sachsenhofer RF, Grecula P, Sasvári T, Palinkaš LA, Borojević-Šoštarić S, Strmić-Palinkaš S, Prochaska W, Garuti G, Zaccarini F, Arbouille D, Schulz H-M, Locmelis B (2008b) The origin of mineral and energy resources of Central Europe (map 1: 2500000). Geological Society of London, London (on CD ROM)Google Scholar
  72. Dill HG, Melcher F, Gerdes A, Weber B (2008c) The origin and zoning of hypogene and supergene Fe-Mn-Mg-Sc-U-REE-Zn phosphate mineralization from the newly discovered Trutzhofmühle aplite (Hagendorf pegmatite province, Germany). Can Mineral 46:1131–1157CrossRefGoogle Scholar
  73. Dill HG, Weber B, Gerdes A, Melcher F (2009a) The Fe-Mn phosphate aplite “Silbergrube” near Waidhaus, Germany: epithermal phosphate mineralization in the Hagendorf-Pleystein pegmatite province. Mineral Mag 72:1143–1168Google Scholar
  74. Dill HG, Weber B, Kaufhold S (2009b) The origin of siderite-goethite-phosphate mineralization in the karst-related faultbound iron ore deposit Auerbach, Germany, a clue to the timing of hypogene and supergene Fe-Al phosphates in NE Bavaria. Neues Jb Mineral Abh 186:283–307CrossRefGoogle Scholar
  75. Dill HG, Gerdes A, Weber B (2010a) Age and mineralogy of supergene uranium minerals – tools to unravel geomorphological and palaeohydrological processes in granitic terrains (Bohemian Massif, SE Germany). Geomorphology 117:44–65CrossRefGoogle Scholar
  76. Dill HG, Hansen B, Keck E, Weber B (2010b) Cryptomelane a tool to determine the age and the physical-chemical regime of a Plio-Pleistocene weathering zone in a granitic terrain (Hagendorf, SE Germany). Geomorphology 121:370–377CrossRefGoogle Scholar
  77. Dill HG, Kaufhold S, Weber B, Gerdes A (2010c) Clay mineralogy and LA-ICP-MS dating of a supergene U-Cu- mineralization bearing nontronite at Nabburg-Wölsendorf, SE Germany. Can Mineral 48:497–511CrossRefGoogle Scholar
  78. Dill HG, Škoda R, Weber B (2011a) Preliminary results of a newly-discovered lazulite-scorzalite pegmatite-aplite in the Hagendorf-Pleystein Pegmatite Province, SE Germany. Asociación Geológica Argentina, Serie D, Publicación Especial Nº 14. Pegmatite, Mendoza, Argentina, pp 79–81Google Scholar
  79. Dill HG, Hansen BT, Weber B (2011b) REE contents, REE minerals and Sm/ Nd isotopes of granite- and unconformity-related fluorite mineralization at the western edge of the Bohemian Massif: with special reference to the Nabburg-Wölsendorf District, SE Germany. Ore Geol Rev 40:132–148CrossRefGoogle Scholar
  80. Dill HG, Weber B, Botz R (2011c) The barite-bearing beryl-phosphate pegmatite Plössberg – a missing link between pegmatitic and vein-type barium mineralization in NE Bavaria, Germany. Geochemistry 71:377–387Google Scholar
  81. Dill HG, Skoda R, Weber B, Berner Z, Müller A, Bakker RJ (2012a) A newly-discovered swarm of shearzone-hosted Bi-As-Fe-Mg-P aplites and pegmatites in the Hagendorf-Pleystein pegmatite province, SE Germany: a step closer to the metamorphic root of pegmatites. Can Mineral, Special Volume dedicated to Petr Černý 50:943–947Google Scholar
  82. Dill HG, Weber B, Klosa D (2012b) Crystal morphology and mineral chemistry of monazite–zircon mineral assemblages in continental placer deposits (SE Germany): ore guide and provenance marker. J Geochem Explor 112:322–346CrossRefGoogle Scholar
  83. Dill HG, Skoda R, Weber B, Müller A, Berner ZA, Wemmer K, Balaban S-I (2013a) Mineralogical and chemical composition of the Hagendorf-North Pegmatite, SE Germany – a monographic study. Neues Jb Mineral Abh 190:281–318CrossRefGoogle Scholar
  84. Dill HG, Garrido MM, Melcher F, Gomez MC, Weber B, Luna LI, Bahr A (2013b) Sulfidic and non-sulfidic indium mineralization of the epithermal Au-Cu-Zn-Pb-Ag deposit San Roque (Provincia Rio Negro, SE Argentina) – with special reference to the “indium window” in zinc sulfide. Ore Geol Rev 51:103–128CrossRefGoogle Scholar
  85. Dill HG, Weber B, Botz R (2013c) Metalliferous duricrusts (“orecretes”) – markers of weathering: a mineralogical and climatic-geomorphological approach to supergene Pb-Zn-Cu-Sb-P mineralization on different parent materials. Neues Jb Mineral Abh 190:123–195CrossRefGoogle Scholar
  86. Dill HG, Weber B, Melcher F, Wiesner W, Müller A (2014) Titaniferous heavy mineral aggregates as a tool in exploration for pegmatitic and aplitic rare-metal deposits (SE Germany). Ore Geol Rev 57:29–52CrossRefGoogle Scholar
  87. Duvall AR, Clark MK, van der Pluijm BA, Li C (2011) Direct dating of Eocene reverse faulting in northeastern Tibet using Ar-dating of fault clays and low-temperature thermochronometry. Earth Planet Sci Lett 304:520–526CrossRefGoogle Scholar
  88. Ericsson T, Nord AG, Aberg G (1986) Cation partitioning in hydrothermally prepared olivine-related (Fe, Mn)-sarcopsides. Am Mineral 71:136–141Google Scholar
  89. Fernandez-Caliani JC, Crespo E, Rodas M, Barrenechea JF, Luque FJ (2004) Formation of nontronite from oxidative dissolution of pyrite disseminated in Precambrian felsic metavolcanics of the Southern Iberian Massif (Spain). Clay Clay Miner 52:106–114CrossRefGoogle Scholar
  90. Ferriss EDA, Ewing RC, Becker U (2010) Simulation of thermodynamic mixing properties of actinide-containing zircon solid solutions. Am Mineral 95:229–241CrossRefGoogle Scholar
  91. Fiala J, Fuchs G, Wendt JI (1995) Stratigraphy. In: Dallmeyer RD, Franke W, Weber W (eds) Pre-permian geology of Central and Eastern Europe. Springer, Berlin/Heidelberg, pp 417–428CrossRefGoogle Scholar
  92. Fransolet A-M (1980) The eosphorite-childrenite series associated with the Li-Mn-Fe phosphate minerals from the Buranga pegmatite, Rwanda. Mineral Mag 43:1015–1023CrossRefGoogle Scholar
  93. Fransolet A-M, Hatert F, Fontan F (2004) Petrographic evidence for primary hagendorfite in an unusual assemblage of phosphate minerals, Kibingo Granitic Pegmatite, Rwanda. Can Mineral 42:697–704CrossRefGoogle Scholar
  94. Frey M, De Capitani C, Liou JG (1991) A new petrogenetic grid for low-grade metabasites. J Metamorph Geol 9:497–509CrossRefGoogle Scholar
  95. Frondel C (1958) Strunzite, a new mineral. Naturwissenschaften 45:37–38CrossRefGoogle Scholar
  96. Galliski MA, Marquez Zavalia MF, Lomniczi de Upton I, Oyarzabal JC (1998) Mitridatite from the San Luis granitic pegmatite, La Florida, Argentina. Can Mineral 36:395–397Google Scholar
  97. García-Lorenzo ML, Pérez-Sirvent C, Martínez-Sánchez MJ, Molina-Ruiz J (2012) Trace elements contamination in an abandoned mining site in a semiarid zone. J Geochem Explor 113:23–35CrossRefGoogle Scholar
  98. Giuliani G, France-Lanord C, Coget P, Schwarz D, Cheilletz A, Branquet Y, Giard D, Martin-Izard A, Alexandrov P, Piat DH (1998) Oxygen isotope systematics of emerald: relevance for its origin and geological significance. Mineral Deposita 33:513–519CrossRefGoogle Scholar
  99. Glodny J, Grauert B, Fiala J, Vejnar Z, Krohe A (1998) Metapegmatites in the western Bohemian massif: ages of crystallization and metamorphic overprint, as constrained by U–Pb zircon, monazite, garnet, columbite and Rb–Sr muscovite data. Geol Rundsch/Int J Earth Sci 87:124–134Google Scholar
  100. Grauby O, Petit S, Decarreau A, Baronnet A (1994) The nontronite-saponite series; an experimental approach. Eur J Mineral 6:99–112CrossRefGoogle Scholar
  101. Grew ES (2002) Mineralogy, petrology and geochemistry of beryllium: an introduction and list of beryllium minerals. In: Beryllium, mineralogy, petrology, and geochemistry, Reviews in mineralogy and geochemistry 50. Mineralogical Society of America, Washington, DC, pp 1–76Google Scholar
  102. Grey IE, Mumme WG, Neville SM, Wilson NC, Birch WD (2010) Jahnsite-whiteite solid solutions and associated minerals in the phosphate pegmatite at Hagendorf-Süd, Bavaria, Germany. Mineral Mag 74:969–978CrossRefGoogle Scholar
  103. Grey IE, Macrae CM, Keck E, Birch WD (2012) Aluminium-bearing strunzite derived from jahnsite at the Hagendorf-Süd pegmatite, Germany. Mineral Mag 76:1165–1174CrossRefGoogle Scholar
  104. Habel M (2003) Neufunde aus dem östlichen Bayerischen Wald. Mineralienwelt 14:24–29Google Scholar
  105. Habel A, Habel M (1991) Die Granitbrüche von Tittling im Bayerischen Wald (Matzersdorf). Emser Hefte 91:37Google Scholar
  106. Habel M, Reinhardt M (2011) Neufunde aus dem O Bayerischen Wald. Mineralienwelt 21:81–82Google Scholar
  107. Harrison TM, Célérier J, Aikman AB, Hermann J, Heizler MT (2009) Diffusion of 40Ar in muscovite. Geochim Cosmochim Acta 73:1039–1051CrossRefGoogle Scholar
  108. Hatert F, Roda-Robles E, Keller P, Fontan F, Fransolet A-M (2007) Petrogenetic significance of the triphylite + sarcopside intergrowths in granitic pegmatites: an experimental investigation of the Li(Fe,Mn)(PO4)-(Fe,Mn)3(PO4)2 system. Granitic pegmatites: the state of the art, Book of Abstracts, 44Google Scholar
  109. Hatert F, Ottolini L, Schmid-Beurmann P (2011) Experimental investigation of the alluaudite + triphylite assemblage, and development of the Na-in-triphylite geothermometer: applications to natural pegmatite phosphates. Contrib Mineral Petrol 161:531–546CrossRefGoogle Scholar
  110. Hauzenberger CA, Häger T, Sutthirat C, Bojar A-V, Kienzel N (2005) Geochemical characterization of corundum from different gem deposits: a stable isotope and trace element study. Gem-materials and modern analytical methods. GEM.MAT.MAM, Hanoi, 3 rd international workshop, pp 55–62Google Scholar
  111. Heimann A (1997) The chemical composition of gahnite and garnet as exploration guides to and indicators of rare element (Li) granitic pegmatites. Final technical report U.S.G.S. mineral resources external research program U.S. Department of energy, Award number g10ap00051, 24 ppGoogle Scholar
  112. Heinrich EW (1951) Mineralogy of triplite. Am Mineral 36:256–271Google Scholar
  113. Hochleitner R, Fehr KT (2010) The keckite problem and its bearing on the crystal chemistry of the jahnsite group: Mössbauer and electron-microprobe studies. Can Mineral 84:1445–1453CrossRefGoogle Scholar
  114. Hogarth D (1977) Classification and nomenclature of pyrochlore group. Am Mineral 62:403–410Google Scholar
  115. Iiishi K, Tomisaka T, Kato T, Takeno S (1970) Syntheses of valleriite. Am Mineral 55:2107–2110Google Scholar
  116. Ioannou SE, Spooner ETC (2000) Miocene epithermal Au-Ag vein mineralization, dixie claims, Midas District, north-central Nevada; characteristics and controls. Explor Min Geol 9:233–252CrossRefGoogle Scholar
  117. Ivakin Yu D, Danchevskaya MN, Ovchinnikova OG, Muravieva GP (2006) Thermo vaporous synthesis of fine crystalline gahnite (ZnAl2O4). J Mater Sci 41:1377–1383CrossRefGoogle Scholar
  118. Jacob H (1967) Petrologie von Asphaltiten und asphaltischen Pyrobitumen. Erdöl, Kohle, Erdgas, Petrochemie 20:393–400Google Scholar
  119. Jahns RH, Burnham CW (1969) Experimental studies of pegmatite genesis: I: a model for the derivation and crystallization of granitic pegmatites. Econ Geol 64:843–864CrossRefGoogle Scholar
  120. Kampf AR (1992) Beryllophosphate chains in the structures of fransoletite, parafransoletite and erleite and some general comments on beryllophosphate linkages. Am Mineral 77:848–856Google Scholar
  121. Kastning J, Schlüter J (1994) Die Mineralien von Hagendorf und ihre Bestimmung, vol 2, Schriften des Mineralogischen Museums der Universität Hamburg. C. Weise Verlag, Munich, 95 ppGoogle Scholar
  122. Keck E (2001) Carlhintzeit Ca2AlF7.H2O vom Kreuzberg in Pleystein, Oberpfalz. Aufschluss 52:219–222Google Scholar
  123. Keller P, Von Knorring O (1989) Pegmatites at the Okatjimuku farm, Karibib, Namibia Part I: Phosphate mineral associations of the Clementine II pegmatite. Eur J Mineral 1:567–593CrossRefGoogle Scholar
  124. Keller P, Fontan F, Fransolet AM (1994) Intercrystalline cation partitioning between minerals of the triplite-zwieselite-magniotriplite and the triphylite-lithiophilite series in granitic pegmatites. Contrib Mineral Petrol 118:239–248CrossRefGoogle Scholar
  125. Kempe U, Wolf D (2006) Anomalously high Sc contents in ore minerals from Sn-W deposits: possible economic significance and genetic implications. Ore Geol Rev 28:103–122CrossRefGoogle Scholar
  126. Kleck W (1996) Crystal settling in pegmatite magma. Abstracts and Program. Geological Association of Canada and Mineralogical Association of Canada, A-50Google Scholar
  127. Kraus F (2014) Geheimnis des stinkenden Minerals – Von “Stinkspat” und elementarem Fluor. Fluor More 2(14):38–42Google Scholar
  128. Kuznetsova L (2013) Kystaryssky granite complex: tectonic setting, geochemical peculiarities and relations with rare-element pegmatites of the south Sangilen Belt (Russia, Tyva Republic). In: PEG 2013, the 6th international symposium on granitic pegmatites, pp 73–74Google Scholar
  129. Laubmann H (1924) Die Minerallagerstätten der Pegmatite. Aus: Die Minerallagerstätten von Bayern. Piloty und Loehle, München, pp 39–65Google Scholar
  130. Laubmann H, Steinmetz H (1920) Phosphatführende Pegmatite des Oberpfälzer und des Bayerischen Waldes. Z Krist 55:523–586Google Scholar
  131. Lehrberger G, Preinfalk C, Morteani G, Lahusen L (1990) Stratiforme Au-As-Bi-Vererzung in Cordierit-Sillimanit-Gneisen des Moldanubikums bei Oberviechtach-Unterlangau, Oberpfälzer Wald (NE-Bayern). Geologica Bavarica 95:133–176Google Scholar
  132. Linnen RL, Keppler H (1997) Columbite solubility in granitic melts: consequences for the enrichment and fractionation of Nb and Ta in the Earth’s crust. Contrib Mineral Petrol 128:213–227CrossRefGoogle Scholar
  133. Liou JG, De Capitani C, Frey M (1991) Zeolite equilibria in the system CaAl2Si2O8–NaAlSi3O8–SiO2–H2O. N Z J Geol Geophys 34:293–301CrossRefGoogle Scholar
  134. Lottermoser BG, Lu J (1997) Petrogenesis of rare-element pegmatites in the Olary Block, South Australia, part 1. Mineralogy and chemical evolution. Mineral Petrol 59:1–19CrossRefGoogle Scholar
  135. Lusk J, Ford CE (1978) Experimental extension of the sphalerite geobarometer to 10 kbar. Am Mineral 63:516–519Google Scholar
  136. Lusk J, Scott SD, Ford CE (1993) Phase relations in the Fe–Zn–S system to 5 Kbars and temperatures between 325 and 150 °C. Econ Geol 88:1880–1903CrossRefGoogle Scholar
  137. Martin JD, Gil ASI (2005) An integrated thermo-dynamic mixing model for sphalerite geobarometry from 300 to 850 °C and up to 1 GPa. Geochim Cosmochim Acta 69:995–1006CrossRefGoogle Scholar
  138. Marzoni Fecia Di Cossato Y, Orlandi P, Vezzalini G (1989) Rittmannite, a new mineral species of the whiteite group from the Mangualde Granitic Pegmatite, Portugal. Can Mineral 27:447–449Google Scholar
  139. Matthes S (1961) Ergebnisse zur Granatsynthese und ihre Beziehungen zur natürlichen Granatbildung innerhalb der Pyralspit-Gruppe. Geochim Cosmochim Acta 23:233–246CrossRefGoogle Scholar
  140. McPhail DC, Summerhayes E, Welch S, Brugger J (2003) The geochemistry and mobility of zinc in the regolith. Adv Regolith 2003:287–291Google Scholar
  141. Medrano MD, Piper DZ (1997) Fe-Ca-phosphate, Fe-silicate, and Mn-oxide minerals in concretions from the Monterey Formation. Chem Geol 138:9–23CrossRefGoogle Scholar
  142. Mina M, Fanga C, Fayek M (2005) Petrography and genetic history of coffinite and uraninite from the Liueryiqi granite-hosted uranium deposit, SE China. Ore Geol Rev 26:187–197CrossRefGoogle Scholar
  143. Moore PB (1971) Crystal chemistry of the alluaudite structure type: contribution to the, paragenesis of pegmatite phosphate giant crystals. Am Mineral 56:1955–1975Google Scholar
  144. Moore PB, Ito J (1980) Jungit und Matulait: zwei neue tafelige Phosphatmineralien. Aufschluss 31:55–61Google Scholar
  145. Moore PB, Kampf AR (1977) Schoonerite, a new zinc-manganese-iron phosphate mineral. Am Mineral 62:246–249Google Scholar
  146. Morávek P, Lehrberger G (1997) Die genetische und geotektonische Klassifikation der Goldvererzungen in der Böhmischen Masse. Geologica Bavarica 102:7–31Google Scholar
  147. Morávek P, Pouba Z (1990) L ór dans la métallogénie du massif de Bohème. Mineral Deposita (Suppl) 25:90–98Google Scholar
  148. Moretz L, Heimann A, Bitner J, Wise M, Rodrigues Soares D, Mousinho Ferreira A (2013) The composition of garnet as indicator of rare metal (Li) mineralization in granitic pegmatites. In: PEG 2013- the 6th international symposium on granitic pegmatites, pp 94–95Google Scholar
  149. Mücke A (1977) Mineralien aus dem Pegmatit von Hagendorf. Aufschluss 28:353–358Google Scholar
  150. Mücke A (1978) Sekundäre Phosphatmineralien aus dem Pegmatit von Hagendorf/Opf. und deren Paragenesen. Aufschluss 29:211–217Google Scholar
  151. Mücke A (1980) Über einige Mineralien aus dem Pegmatit von Hagendorf/Opf. und deren Paragenesen. Aufschluss 32:85–93Google Scholar
  152. Mücke A (1983) Wilhelmvierlingit, (Ca, Zn)MnFe 3+[OHl(PO4)2]2H2O, a new mineral from Hagendorf/Oberpfalz. Aufschluss 34:267–274Google Scholar
  153. Mücke A (1987) Sekundäre Phosphatmineralien (Perloffit, Brasilianit, Mineralien der Kingsmountit-Gruppe) sowie Brochantit und die Zwieselit-Muschketoffit-Stilpnomelan-Pyrosmalith-Paragenese der 115-m-Sohle des Hagendorfer Pegmatits. Aufschluss 38:5–28Google Scholar
  154. Mücke A (1988) Lehnerit Mn[UO2|PO4]2 8H2O, ein neues Mineral aus dem Pegmatit von Hagendorf/Oberpfalz. Aufschluss 39:209–217Google Scholar
  155. Mücke A, Keck E (2008) Untersuchungen an Columbiten (Fe, Mn)(Nb, Ta)2O6 und dem mit Columbit verwachsenen Neufund Petscheckit U(Fe, Mn)(Nb, Ta)2O8 aus dem Pegmatit von Hagendorf-Süd/Oberpfalz. Aufschluss 59:372–392Google Scholar
  156. Mücke A, Keck E (2011) Karbonate aus dem Pegmatit von Hagendorf-Süd/Opf.: Zusammensetzung, Verbreitung und begleitende Phosphat-Mineralien (Apatit, Hagendorfit und Eosphorit-Gruppe) – darunter einige Neufunde (Triplit, Mineralien der Arrojadit-Dickinsonit Reihe, Goyazit und Variscit). Aufschluss 62:87–117Google Scholar
  157. Mücke A, Keck E, Haase J (1990) Die genetische Entwicklung des Pegmatits von Hagendorf-Süd/Oberpfalz. Aufschluss 41:33–51Google Scholar
  158. Müllbauer F (1925) Die Phosphatpegmatite i. Bayern (Neue Beoabachtungen.). Zeitschrift für Kristallographie, Zeitschrift f Kristallographie 64:319–336Google Scholar
  159. Murowchick JB, Barnes HL (1986) Marcasite precipitation from hydrothermal solutions. Geochim Cosmochim Acta 50:2615–2629CrossRefGoogle Scholar
  160. Nägele M (1982) Ein bemerkenswerter Eigenfund: Orientierte Verwachsung von Torbernit und Autunit von Hagendorf-Süd. Lapis 6:38Google Scholar
  161. Němec D (1998) The Rožná pegmatite field, western Moravia (Czech Republic). Chem Erde 58:233–246Google Scholar
  162. Nizamoff JW, Simmons WB, Falster AU (2004) Geology and geophysics, Univ of New Orleans, New Orleans, Phosphate mineralogy and paragenesis of the Palermo #2 Pegmatite, North Groton, New Hampshire. Denver annual meeting, 7–10 November 2004Google Scholar
  163. Novák M, Filip J (2010) Unusual (Na, Mg)-enriched beryl and its breakdown products (beryl II, bazzite, bavenite) from euxenite-type NYF pegmatite related to the orogenic ultrapotassic Třebíč pluton, Czech Republic. Can Mineral 48:615–628CrossRefGoogle Scholar
  164. Novák M, Černý P, Kimbrough DL, Taylor MC, Ercit TS (1998b) U-Pb Ages of monazite from granitic pegmatites in the Moldanubian Zone and their geological implications. Acta Univ Carol Geol 42:309–310Google Scholar
  165. Novák F, Pauliš P, Süsser C (2001a) Chemical composition of crandallite, goyazite and waylandite from Krásno near Horni Slavkov. Bull Mineral Petrol Odd Nar Muz 9:230–234 (in Czech)Google Scholar
  166. Novák J, Pivec E, Holub FV, Štemprok M (2001b) Greisenization of lamprophyres in the Krupka Sn-W district in the eastern Krušné Hory/Erzgebirge, Czech Republic. In: Piestrzynski A et al (eds) Mineral deposits at the beginning of the 21st century. A. A. Balkema, Rotterdam, pp 465–467Google Scholar
  167. Nriagu JO (1976) Phosphate-clay mineral relations in soils and sediments. Can J Earth Sci 13:717–736CrossRefGoogle Scholar
  168. Orville PM (1963) Alkali ion exchange between vapor and feldspar phases. Am J Sci 261:201–237CrossRefGoogle Scholar
  169. Oyarzábal J, Galliski MÁ, Perino E (2009) Geochemistry of K-feldspar and Muscovite in Rare-element Pegmatites and Granites from the Totoral Pegmatite Field, San Luis, Argentina. Resour Geol 59:315–329CrossRefGoogle Scholar
  170. Parc S, Nahon D, Tardy Y, Viellard P (1982) Estimated solubility products and fields of stability for cryptomelane, nsutite, birnessite, and lithiophorite based on natural lateritic weathering sequences. Am Mineral 74:466–475Google Scholar
  171. Peacor DR, Rouse RC, Coskren TD, Essene EJ (1999) Destinezite (“diadochite”), Fe2(PO4)(SO4)(OH).6H2O: its crystal structure and role as a soil mineral at Alum Cave Bluff, Tennessee. Clay Clay Miner 47:1–11CrossRefGoogle Scholar
  172. Pedersen RB, Dunning GR, Robins B (1989) U-Pb ages of nepheline syenite pegmatites from the Seiland Magmatic Province, N. Norway. In: Gayer RA (ed) The Caledonide geology of Scandinavia. Graham and Trotman, London, pp 3–8CrossRefGoogle Scholar
  173. Pfaffl F (1966) Die Blötz bei Bodenmais/Bayrischer Wald. Aufschluss 17:207–208Google Scholar
  174. Piantone P, Itard Y, Pillard F, Boulingui B (1995) Compositional variation in pyrochlores from the weathered Mabounié carbonatite (Gabon). In: Pasava J, Kríbek B, Zák K (eds) Mineral deposits: from their origin to their environmental impacts. Balkema, Rotterdam, pp 629–632Google Scholar
  175. Pieczka A (2007) Beusite and an unusual Mn-rich apatite from the Szklary granitic pegmatite, Lower Silesia, southwestern Poland. Can Mineral 45:901–914CrossRefGoogle Scholar
  176. Pirard C, Hatert F, Fransolet A-M (2007) Alteration sequences of aluminium phosphates from Montebras Pegmatite, Massif Central, France. Granitic Pegmatites: The State of the Art – International Symposium. 06th–12th May 2007, PortoGoogle Scholar
  177. Pitra P, Boulvais P, Antonoff V (2008) Wagnerite in a cordierite-gedrite gneiss: witness of long-term fluid-rock interaction in the continental crust (Ile d’Yeu, Armorican Massif, France). Am Mineral 93:315–326CrossRefGoogle Scholar
  178. Pöllmann H, Bäumler W, Meier S (2005) Sekundärphosphate aus dem Steinwaldgranit von Hopfau bei Erbendorf/Oberpfalz. Aufschluss 56:71–79Google Scholar
  179. Pupin JP (1980) Zircon and granite petrology. Contrib Mineral Petrol 73:207–220CrossRefGoogle Scholar
  180. Pupin JP, Turco G (1981) Le zircon, minéral commun significatif des roches endogènes et exogènes. Bull Minéral 104:724–731Google Scholar
  181. Rabe H (1975) Der Nachweis einer geochemischen Volumenregel am Beispiel von Diatexien aus dem Pegmatit von Hagendorf /Oberpfalz. PhD dissertation, Technical University, BerlinGoogle Scholar
  182. Rakotondrazafy AFM, Giuliani G, Ohnenstetter D, Fallick AE, Rakotosamizanany S, Andriamamonjy A, Ralantoarison T, Razanatseheno M, Offant Y, Garnier V, Maluski H, Dunaigre C, Schwarz D, Ratrimo V (2008) Gem corundum deposits of Madagascar: a review. Ore Geol Rev 34:134–154CrossRefGoogle Scholar
  183. Redhammer GJ, Tippelt G, Bernroider M, Lottermoser W, Amthauer G, Roth G (2005) Hagendorfite (Na, Ca)MnFe2(PO4)3 from type locality Hagendorf (Bavaria, Germany): crystal structure determination and 57Fe Mössbauer spectroscopy. Eur J Mineral 17:915–932CrossRefGoogle Scholar
  184. Richardson SW, Gilber MC, Bell PM (1969) Experimental determination of kyanite-andalusite and andalusite-sillimanite equilibria; the aluminum silicate triple point. Am J Sci 267:259–272CrossRefGoogle Scholar
  185. Robbins LM, Falster AU, Simmons WB, Stark S (2008) Benyacarite; new data from the Hagendorf-Süd Pegmatite, Eastern Bavaria, Germany. Rocks Miner 83:340–347CrossRefGoogle Scholar
  186. Roberts RJ, Corfu F, Torsvik TH, Ramsay DM, Ashwal LD (2006) Short-lived mafic magmatism at 570 Ma in the northern Norwegian Caledonides- U/Pb zircon ages from the Seiland Igneous Province. Geol Mag 143:1–17CrossRefGoogle Scholar
  187. Robertson BT (1982) Occurrence of epigenetic phosphate minerals in a phosphatic iron formation Yulon Territory. Can Mineral 20:177–187Google Scholar
  188. Rodgers KA (1989) The thermochemical behavior of vivianite and vivianite/metavivianite admixtures from Borne (Netherlands) and Mangualde (Portugal). Geol Mijnb 68:257–262Google Scholar
  189. Rodgers KA, Henderson GS (1986) The thermochemistry of some iron phosphate minerals: vivianite, metavivianite, bariéite, ludlamite and metavivianite/vivianite admixtures. Thermochim Acta 104:1–12CrossRefGoogle Scholar
  190. Rogers RJ, Brown FH (1979) Authigenic mitridatite from the Shungura formation, southwestern Ethiopia. Am Mineral 64:169–171Google Scholar
  191. Rose H (1845) Über die Zusammensetzung der Tantalite und über ein im Tantalit von Baiern entaltenes neues Mineral. J Prakt Chem 34:36–42CrossRefGoogle Scholar
  192. Russell JD, Fraser AR (1994) Infrared methods. In: Wilson MJ (ed) Clay mineralogy: spectroscopic and chemical determinative methods. Chapman and Hall, London, pp 11–67CrossRefGoogle Scholar
  193. Ruzicka V (1971) Geological comparison between East European and Canadian uranium deposits. Can Geol Surv 70–48:1–196Google Scholar
  194. Rykart R (1995) Quarz-Monographie – Die Eigenheiten von Bergkristall, Rauchquarz, Amethyst, Chalcedon, Achat, Opal und anderen Varietäten. Ott Verlag Thun, 2nd, 462 ppGoogle Scholar
  195. Schaaf P, Sperling T, Müller-Sohnius D (2008) Pegmatites from the Bavarian Forest, SE Germany: geochronology, geochemistry and mineralogy. Geologica Bavarica 108:204–303Google Scholar
  196. Schmid H, Weinelt W (1978) Lagerstätten in Bayern. Geologica Bavarica 77:1–160Google Scholar
  197. Schmid-Beurmann P, Knitter ST, Cemicï L (1999) Crystal chemical properties of synthetic lazulite ± scorzalite solid-solution series. Phys Chem Miner 26:496–505CrossRefGoogle Scholar
  198. Schnorrer G, Kronz A, Pascher G (2003) Cheralith, Monazit und Xenotim drei neue Minerale der Monazit-Gruppe sowie Uranosphärit, ein sekundäres Bi-Uran-Mineral vom ehemaligen Phosphatpegmatit Hagendorf-Süd/Oberpfalz. Aufschluss 54:267–272Google Scholar
  199. Scholz A (1925) Untersuchungen über Mineralführung und Mineralgenese der bayerischen Pegmatite, Bericht für das Jahr 1924 des Naturwissenschaftlichen Vereins Regensburg e.V. Regensburg 17:1–46Google Scholar
  200. Schroecke H (1966) Solid-solution series in the columbite-tapiolite, the columbite-tapiolite-euxenite, and the columbite-tapiolite-FeNbO sub 4 groups. Neues Jb Mineral Abh 106Google Scholar
  201. Seeliger E, Mücke A (1970) Ernstit, ein neues Mn 2+Fe 3+ – Phosphat und seine Beziehungen zum Eosphorit. Neues Jb Mineral Monat 1970:289–298Google Scholar
  202. Siebel W, Thiel M, Chen F (2006) Zircon geochronology and compositional record of late- to post-kinematic granitoids associated with the Bavarian Pfahl zone (Bavarian Forest). Mineral Petrol 86:45–62CrossRefGoogle Scholar
  203. Simmat R, Rickers K (2000) Wagnerite in high-MgAl granulites of Anakapalle, Eastern Ghats Belt, India. Eur J Mineral 12:661–666CrossRefGoogle Scholar
  204. Simmons WB, Webber KL, Falster AU, Nizamoff JW (2003) Pegmatology: pegmatite mineralogy, petrology and petrogenesis. Rubellite Press, New Orleans, 176 ppGoogle Scholar
  205. Soares DR, Beurlen H, Ferreira ACM, Da Silva MRR (2007) Chemical composition of gahnite and degree of pegmatitic fractionation in the Borborema Pegmatite province Northeastern Brazil. Anais da Academia Brasiliera de Ciencias 79:395–404Google Scholar
  206. Sowder AG (1998) The formation, transformation, and stability of environmentally relevant uranyl mineral phases. PhD dissertation, Clemson UniversityGoogle Scholar
  207. Sowder AG, Clark SB, Fjeld RA (1996) The effect of silica and phosphate on the transformation of schoepite to becquerelite and other uranyl phases. Radiochim Acta 74:45–49Google Scholar
  208. Sowder AG, Clark SB, Fjeld RA (1999) The transformation of uranyl oxide hydrates: the effect of dehydration on synthetic metaschoepite and its alteration to becquerelite. Environ Sci Technol 33:3552–355CrossRefGoogle Scholar
  209. Strmić Palinkaš S, Bermanec V, Palinkaš LA, Boev B, Gault RA, Prochaska W, Bakker RA (2012) The evolution of the Čanište epidote-bearing pegmatite, Republic of Macedonia: evidence from mineralogical and geochemical features. Geologia Croatica 65:423–434Google Scholar
  210. Strunz H (1948) Scholzit, ein neue Mineralart. Fortschr Mineral 27:31–32Google Scholar
  211. Strunz H (1954a) Laueit, MnFe23+[OH|PO4]2 • 8H2O, ein neues Mineral. Naturwissenschaften 41:256–256CrossRefGoogle Scholar
  212. Strunz H (1954b) Hagendorfit, ein neues Mineral der Varulith-Hühnerkobelit-Reihe. Neues Jb Mineral Monat 1954:252–255Google Scholar
  213. Strunz H (1956) Pseudolaueit, ein neues Mineral. Naturwissenschaften 6:128CrossRefGoogle Scholar
  214. Strunz H (1961) Epitaxie von Uraninit auf Columbit. Aufschluss 12:81–84Google Scholar
  215. Strunz H (1962) Die Uranfunde in Bayern von 1804 bis 1962 (einschliesslich der radiometrischen Messergebnisse). Naturwissesnchaftlicher Verein zu Regensburg, Regensburg, 92 ppGoogle Scholar
  216. Strunz H, Fischer H (1957) Childro-Eosphorit, Tavorit und Fairfieldit von Hagendorf. Neues Jb Mineral Monat 1957:78–88Google Scholar
  217. Strunz H, Tennyson C (1956) Kristallographie von Scholzit, CaZn2[PO4]2•2H2O. Z Krist 107:318–324CrossRefGoogle Scholar
  218. Strunz H, Tennyson C (1975) Über den Columbit vom Hühnerkobel im Bayerischen Wald und seine Uran-Paragenese. Aufschluss 12:313–324Google Scholar
  219. Strunz H, Forster A, Tennyson C (1975) Die Pegmatite der nördlichen Oberpfalz. Aufschluss 26:117–189Google Scholar
  220. Strunz H, Tennyson C, Mücke A (1976) Mineralien von Hagendorf/Ostbayern – Fortschrittsbericht. Aufschluss 27:329–340Google Scholar
  221. Sturman BD, Rouse RC, Dunn PJ (1981) Parascholzite, a new mineral from Hagendorf, Bavaria, and its relationship to scholzite. Am Mineral 66:843–851Google Scholar
  222. Tajčmanová L, Konopásek J, Connolly JAD (2007) Diffusion-controlled development of silica-undersaturated domains in felsic granulites of the Bohemian Massif (Variscan belt of Central Europe). Contrib Mineral Petrol 153:237–250CrossRefGoogle Scholar
  223. Tajčmanová L, Konopásek J, Košler J (2009) Distribution of zinc and its role in stabilization of spinel-bearing mineral assemblages in high-grade felsic rocks of the Moldanubian domain (Bohemian Massif). Eur J Mineral 21:407–418CrossRefGoogle Scholar
  224. Talapatra AK (1968) Sulfur mineralisation associated with migmatization in the Southeastern part of the Singhbhum Shear Zone, Bihar. India Econ Geol 63:156–165CrossRefGoogle Scholar
  225. Tennyson C (1954) Phosphoferrit und Reddingit von Hagendorf. Neues Jb Mineral Abh 87:185–217Google Scholar
  226. Tennyson C (1958) Columbitkristalle von Hagendorf, Bayern. Neues Jb Mineral Monat 1958:121–124Google Scholar
  227. Thomas R, Davidson P, Rhede D, Leh M (2009) The miarolitic pegmatites from the Königshain: a contribution to understanding the genesis of pegmatites. Contrib Mineral Petrol 157:505–523CrossRefGoogle Scholar
  228. Vignola P, Fransolet AM, Diella V, Ferrari ES (2011) Complex mechanisms of alteration in a graftonite + sarcopside + triphylite association from the Luna pegmatite, Piona, Lecco province, Italy. Can Mineral 49:765–776CrossRefGoogle Scholar
  229. Vochten R (1990) Transformation of chernikovite and sodium autunite into lehnerite. Am Mineral 75:221–225Google Scholar
  230. Vochten R, De Grave E, Van Springel K, Van Haverbeke L (1995) Mineralogical and Moessbauer spectroscopic study of some strunzite varieties of the Silbergrube, Waidhaus, Oberpfalz, Germany. Neues Jb Mineral Monat 1995:11–25Google Scholar
  231. von Horstig G (1972) Mineralabfolge und Tektonik in den flussspatführenden Mineralgängen des Frankenwaldes. Geologica Bavarica 65:160–184Google Scholar
  232. von Knorring O, Mrose ME (1963) Westgrenite and waylandite, two new bismuth minerals from Uganda. Geol Soc Am Spec Pap 73:265AGoogle Scholar
  233. von Knorring O, Sahama TG (1982) Some Fe-Mn phosphates from the Buranga Pegmatite, Rwanda. Schweizer Mineralogische-Petrographische Mitteilungen 62:343–352Google Scholar
  234. Von Pechmann E, Bianconi F (1982) Synmetamorphic uranium mineralization from Tiraun, Graubfinden, Switzerland. Mineral Mag 46:173–178CrossRefGoogle Scholar
  235. Walenta K, Binder W (1980) Kidwellit und Dufrenit aus den Mines de Montmins bei Echassieres (französisches Zentralmassiv). Aufschluss 31:51–54Google Scholar
  236. Wark DA, Watson EB (2006) TitaniQ: a titanium-in-quartz geothermometer. Contrib Mineral Petrol 152:743–754CrossRefGoogle Scholar
  237. Warry ND, Kramer JR (1976) Some factors affecting the synthesis of cryptocrystalline strengite from an amorphous phosphate complex. Can Mineral 14:40–46Google Scholar
  238. Weber B (1977) Phosphophyllit von Hagendorf-Süd. Papier-Weber, Weiden, 8 ppGoogle Scholar
  239. Weber B (1978a) Mineralien aus den Metapegmatiten Wilma und Gertrude bei Obersdorf und Menzlhof in der Oberpfalz. Aufschluss 29:325–329Google Scholar
  240. Weber K (1978b) Das Bewegungsbild im Rhenoherzynikum – Abbild einer varistischen Subfluenz. Z Dtsch Geol Ges 129:249–281Google Scholar
  241. Weber B (2013) Die Mineralien des Amphibolit-Steinbruchs Muglhof/Ödenthal bei Weiden. Aufschluss 64:268–281Google Scholar
  242. Weiss S, Vignola P, Diella V, Meisser N, Oppizzi P, Grundmann G (2004) Die Mineralien der Pegmatite von Brissago, Tessin, Schweiz: Aussergewöhnliche Neufunde 1999-2001. Lapis 29:24–38Google Scholar
  243. Wilk H (1959) Phosphosiderit und Strengit von Pleystein in Ostbayern. Acta Albertina Ratisbonensia 23:107–170Google Scholar
  244. Winkler HGF (1967) Die Genese der metamorphen Gesteine. Springer, Berlin, 237 ppCrossRefGoogle Scholar
  245. Winkler HGF (1976) Petrogenesis of metamorphic rocks. Springer, New York, 348 ppCrossRefGoogle Scholar
  246. Yakovenchuk VN, Keck E, Krivovichev SV, Pakhomovsky YA, Selivanova EA, Mikhailova JA, Chernyatieva AP, Ivanyuk GY (2012) Whiteite-(CaMnMn), CaMnMn2Al2[PO4]4(OH)2*8H2O, a new mineral from the Hagendorf-Süd granitic pegmatite, Germany. Mineral Mag 76:2761–2771CrossRefGoogle Scholar
  247. Yakubovich OV, Matviyenko YN, Simonov MA, Melínikov OK (1986) The crystalline structure of synthetic Fe 3+-arrojadites with the idealized formula K2Na5 Fe 2+ 14 Fe 3+ (PO4)12(OH)2. Vestnik Moskovovskogo Universiteta, Seriya Geologiya 1986:36–47Google Scholar
  248. Zhang L (1994) Electrochemical equilibrium diagrams for sulfidization of oxide copper minerals. Miner Eng 7:927–932CrossRefGoogle Scholar
  249. Zhang RY, Liou JG, Shu JF (2002) Hydroxyl-rich topaz in high-pressure and ultrahigh-pressure kyanite quartzites, with retrograde woodhouseite, from the Sulu terrane, eastern China. Am Mineral 87:445–453CrossRefGoogle Scholar
  250. Zhang FX, Pointeau V, Shuller LC, Reaman DM, Lang M, Liu ZX, Hu J, Panero WR, Becker U, Poinssot C, Ewing RC (2009) Structural transition and electron transfer in coffinite, USiO4, at high pressure. Am Mineral 94:916–920CrossRefGoogle Scholar
  251. Zoback MD, Mastin L, Barton C (1986) In-situ stress measurements in deep boreholes using hydraulic fracturing, well breakouts, and strongly wave polarization. In: Proceedings of the international symposium on rock stress measurements, Stockholm, 1–3 September 1986, pp 289–299Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Harald G. Dill
    • 1
  1. 1.Gottfried-Wilhelm-Leibniz UniversityHannoverGermany

Personalised recommendations