Advertisement

Pegmatites and Their Country Rocks in the Central European Variscides

  • Harald G. Dill
Chapter
  • 466 Downloads
Part of the Modern Approaches in Solid Earth Sciences book series (MASE, volume 15)

Abstract

Aplites and pegmatites can be correlated with their country rocks using the temporal, the compositional/chemical and physical relationships. The emplacement of pegmatitic rocks began during the early Paleozoic (470–440 Ma) which are encountered as metapegmatites in nappe units in the Bohemian Massif, proper, and in the Ötztal Massif within the Alpine Mts. Range. At the end of the MP-HT metamorphism around 370 Ma pegmatoids came into existence in the allochthonous units. From the core to the margin near the collision zone the granites and the pegmatites get younger. The belong to the Variscan heat event, but a close-up view of some of the pegmatites bear witness of an older cooling age of the muscovite from the HPPP pegmatite than the whole-rock age of the nearby Flossenbürg granite. The pegmatite show different ages as the major-rock-forming silicates and rare-element minerals, e.g. columbite are considered. Considering the element assemblage of the pegmatites and aplites in the Hagendorf-Pleystein-Pegmatite Province reveals that the element has not been derived from one source only. Intracrustal sources may be claimed for Li, F, U, Sn, B, P, As and Mn. Niobium, beryllium and bismuth (?) are of subcrustal derivation. In addition, there are subcrustal - intermediate repositories as it is the case with the Zn, REE and Y. Apart from the granitic intrusive rocks and metamorphic rocks, another group of subcrustal magmatic rocks, (meta)-lamprophyres, has not been drawn the attention to, which they deserve. If the fractionation and zonation in a pegmatite field or province is investigated and an attempt is made to compare these individual pegmatites and aplites with a nearby granite some critical points have to be considered.
  1. 1.

    the direction of fractionation in and emplacement of the granite

     
  2. 2.

    the polyphase zonation within the pegmatite field or province.

     

The Flossenbürg granite shows a E-W direction of emplacement and an opposite trend of fractionation. The HPPP, which is situated to the south of the afore-mentioned granite, shows an emplacement from the SW towards the NE and a polyphase zonation as a function of the mineral association. With this in mind the granites and pegmatites are supposed to be part of the Variscan thermal event but unrelated with regard to the structural and fractionational processes. They are sisters but not parents and children. Geophysical surveys lend support to this structural-compositional plan. The Flossenbürg Granite dips away from the ZEV metamorphics towards the E, similar to its northern counterpart, the Tirschenreuth Granite. South of the Oberpfalz granites, an ENE to NE trending deep structure, called Luhe Line exists. It is marked by ultrabasic to basic rocks of mantle affiliation. At the point of intersection, where it is crossed by another deep structure, this strong linear magnetic anomaly is perforated by a couple of negative rounded to oval-shaped magnetic anomalies like a “Swiss Cheese”. The zone of intersection coincides with the cluster pegmatites and aplites of the HPPP.A low-resistivity zone known from the foreland dips down under the basement. The low resistivity layer at shallow depth was interpreted as an accumulation of graphitic matter or highly saline waters. Graphitic material accounts for the deep low-resistivity zone. Seismic methods were extensively used during DEKORP. They show a series of southward dipping reflectors which formed the guide-lines for the differentiation within the pegmatite-aplite fields located between the core zone and collision front and mark the nape stacking at the western edge of the Bohemian Massif. The intersection of these nappe piles and deep-seated lineamentary fault zone are of ore control for the HPPP.

Keywords

Country Rock Bohemian Massif Granitic Pegmatite Granite Complex Geochemical Survey 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aldrich LT, Davis GL, Tilton GR, Wetherill GW (1956) Radioactive ages of minerals from the Brown Derby Mine and the Quartz Creek Granite near Gunnison, Colorado. J Geophys Res 61:215–232CrossRefGoogle Scholar
  2. Bauberger W (1957) Über die “Albitpegmatite” der Münchberger Gneissmasse und ihre Nebengesteine. Geologica Bavarica 36:5–77Google Scholar
  3. Besang C, Harre W, Kreuzer H, Lenz H, Müller P, Wendt I (1976) Radiometrische Datierung, geochemische und petrographische Untersuchungen der Fichtelgebirgsgranite. Geol Jahrb E 8:3–71Google Scholar
  4. Bierlein FP, Groves DI, Cawood PA (2009) Metallogeny of accretionary orogens-the connection between lithospheric processes and metal endowment. Ore Geol Rev 36:282–292CrossRefGoogle Scholar
  5. Breiter K (1998a) Granites of the Krušne Hory/ Erzgebirge Mts. Slavkovský Les area. In: Breiter K (ed) Excursion guide: genetic significance of phosphorus in fractionated granites, International geological correlation program, IGCP 373. Czech Geological Survey, Peršlák, pp 21–31Google Scholar
  6. Breiter K (1998b) Phosphorus- and fluorine-rich granite system at Podlesi. In: Breiter K (ed) Excursion guide: genetic significance of phosphorus in fractionated granites, International geological correlation program, IGCP 373. Czech Geological Survey, Peršlák, pp 59–76Google Scholar
  7. Breiter K (1998c) P-rich muscovite granites-latest product of two-mica granites fractionation in the South Bohemian Pluton. In: Breiter K (ed) Excursion guide: genetic significance of phosphorus in fractionated granites, International geological correlation program, IGCP 373. Czech Geological Survey, Peršlák, pp 107–126Google Scholar
  8. Breiter K, Siebel W (1995) Granitoids in the Rozvadov pluton. Geol Rundsch 84:506–519CrossRefGoogle Scholar
  9. Breiter K, Fryda J, Seltmann R, Thomas R (1997) Mineralogical evidence for two magmatic stages in the evolution of an extremely fractionated P-rich rare-metal granite: the Podlesı stock, Krušne Hory, Czech Republic. J Petrol 38:1723–1739CrossRefGoogle Scholar
  10. Broska I, Williams CT, Uher P, Koneçný P, Leichmann J (2004) The geochemistry of phosphorus in different granite suites of the Western Carpathians, Slovakia: the role of apatite and P-bearing feldspar. Chem Geol 205:1–15CrossRefGoogle Scholar
  11. Bültemann W (1954) Mineralien aus den Wölsendorfer Flussspatgruben. Aufschluss 5:211–212Google Scholar
  12. Carl C, Dill HG (1983) Uranium disequilibria and modern redistribution phenomena in alteration zones in the Höhensteinweg uranium occurrence. Uranium 1:113–125Google Scholar
  13. Carl C, Dill HG (1984) U-Pb Datierungen an Pechblenden aus dem Nabburg-Wölsendorfer Flussspatrevier. Geol Jahrb D 63:59–76Google Scholar
  14. Carl C, Dill HG (1985) Age of secondary uranium mineralization in the basement rocks of northeastern Bavaria, F.R.G. Chem Geol 52:295–316Google Scholar
  15. Černý P (1982) Mineralogy of rubidium and cesium. In: Černý P (ed) Granitic pegmatites, science and industry, Short course handbook, 8. Mineralogical Association of Canada, Toronto, pp 149–162Google Scholar
  16. Černý P, Povondra P (1966) Beryllian cordierite from Věžná: (Na+K)+Be ⇒ Al. Neues Jb Mineral Monat 1966:36–44Google Scholar
  17. Claus G (1936) Schwerminerale aus kristallinen Gesteinen des Gebietes zwischen Passau und Cham. Neues Jahrbuch Mineralogie Beilage 71:1–58Google Scholar
  18. Cruft EF (1966) Minor elements in igneous and metamorphic apatite. Geochim Cosmochim Acta 30:375–398CrossRefGoogle Scholar
  19. Cuney M, Barbey P (2014) Uranium, rare metals and granulite facies metamorphism. Geosci Front 5:729–745CrossRefGoogle Scholar
  20. De Jong G, Rotherham J, Phillips GN, Williams PJ (1997) Mobility of rare-earth elements and copper during shear-zone-related retrograde metamorphism. Geol Mijnb 76:311–319CrossRefGoogle Scholar
  21. Dickin AP (2005) Radiogenic isotope geology. Cambridge University Press, Cambridge, 471 ppCrossRefGoogle Scholar
  22. Dill HG (1979) Der Feldspat-Bergbau in der Münchberger Gneismasse. Bergbau 30:301–304Google Scholar
  23. Dill HG (1981) Zwei selenid-führende Uran-Mineralisationen aus dem ostbayerischen Moldanubikum und ihre mögliche Bedeutung für die Klärung der Lagerstättengenese. Geol Jahrb D 48:37–57Google Scholar
  24. Dill HG (1982) Geologie und Mineralogie des Uranvorkommens am Höhensteinweg bei Poppenreuth (NE Bayern) – Ein Lagerstättenmodell. Geol Jahrb D 50:3–83Google Scholar
  25. Dill HG (1983a) On the formation of the vein-type uranium “yellow ores” from the Schwarzach-Area (NE-Bavaria, Germany) and on the behavior of P, As, V, and Se during supergene processes. Geol Rundsch/Int J Earth Sci 72:955–980Google Scholar
  26. Dill HG (1983b) Vein- and metasedimentary-hosted carbonaceous matter and phosphorus from NE Bavaria (F.R. Germany) and their implication on syngenetic and epigenetic uranium concentration. Neues Jb Mineral Abh 148:1–21Google Scholar
  27. Dill HG (1986) Fault-controlled uranium black ore mineralization from the western edge of the Bohemian Massif (NE Bavaria/F.R. Germany). In: Fuchs HD (ed) Vein-type uranium deposits, International Atomic Energy Agency. The Agency, Vienna, pp 275–291Google Scholar
  28. Dill HG (1990) Chemical basin analysis of the metalliferous “Variegated Metamorphics” of the Bodenmais ore district (F.R. of Germany). Ore Geol Rev 5:151–173CrossRefGoogle Scholar
  29. Dill HG, Klosa D (2011) Heavy-mineral-based provenance analysis of Mesozoic continental-marine sediments at the western edge of the Bohemian Massif, SE Germany: with special reference to Fe-Ti minerals and the crystal morphology of heavy minerals. Int J Earth Sci 100:1497–1513CrossRefGoogle Scholar
  30. Dill HG, Kolb SG (1986) The Grossschloppen-Hebanz uranium occurrences: a prototype of mineralized structure zones characterized by desilification and silification. In: Fuchs HD (ed) Vein-type uranium deposits, International Atomic Energy Agency. The Agency, Vienna, pp 261–274Google Scholar
  31. Dill HG, Sachsenhofer RF, Grecula P, Sasvári T, Palinkaš LA, Borojević-Šoštarić S, Strmić-Palinkaš S, Prochaska W, Garuti G, Zaccarini F, Arbouille D, Schulz H-M (2008a) Fossil fuels, ore – and industrial minerals. In: McCann T (ed) Geology of Central Europe, Special publication. Geological Society of London, London, pp 1341–1449Google Scholar
  32. Dill HG, Sachsenhofer RF, Grecula P, Sasvári T, Palinkaš LA, Borojević-Šoštarić S, Strmić-Palinkaš S, Prochaska W, Garuti G, Zaccarini F, Arbouille D, Schulz H-M, Locmelis B (2008b) The origin of mineral and energy resources of Central Europe (map 1: 2500000). Geological Society of London, London (on CD ROM)Google Scholar
  33. Dill HG, Melcher F, Gerdes A, Weber B (2008c) The origin and zoning of hypogene and supergene Fe-Mn-Mg-Sc-U-REE-Zn phosphate mineralization from the newly discovered Trutzhofmühle aplite (Hagendorf pegmatite province, Germany). Can Mineral 46:1131–1157CrossRefGoogle Scholar
  34. Dill HG, Weber B, Gerdes A, Melcher F (2009a) The Fe-Mn phosphate aplite “Silbergrube” near Waidhaus, Germany: epithermal phosphate mineralization in the Hagendorf-Pleystein pegmatite province. Mineral Mag 72:1143–1168Google Scholar
  35. Dill HG, Weber B, Kaufhold S (2009b) The origin of siderite-goethite-phosphate mineralization in the karst-related faultbound iron ore deposit Auerbach, Germany, a clue to the timing of hypogene and supergene Fe-Al phosphates in NE Bavaria. Neues Jb Mineral Abh 186:283–307CrossRefGoogle Scholar
  36. Dill HG, Gerdes A, Weber B (2010a) Age and mineralogy of supergene uranium minerals – tools to unravel geomorphological and palaeohydrological processes in granitic terrains (Bohemian Massif, SE Germany). Geomorphology 117:44–65CrossRefGoogle Scholar
  37. Dill HG, Hansen B, Keck E, Weber B (2010b) Cryptomelane a tool to determine the age and the physical-chemical regime of a Plio-Pleistocene weathering zone in a granitic terrain (Hagendorf, SE Germany). Geomorphology 121:370–377CrossRefGoogle Scholar
  38. Dill HG, Kaufhold S, Weber B, Gerdes A (2010c) Clay mineralogy and LA-ICP-MS dating of a supergene U-Cu- mineralization bearing nontronite at Nabburg-Wölsendorf, SE Germany. Can Mineral 48:497–511CrossRefGoogle Scholar
  39. Dill HG, Škoda R, Weber B (2011a) Preliminary results of a newly-discovered lazulite-scorzalite pegmatite-aplite in the Hagendorf-Pleystein Pegmatite Province, SE Germany. Asociación Geológica Argentina, Serie D, Publicación Especial Nº 14. Pegmatite, Mendoza, Argentina, pp 79–81Google Scholar
  40. Dill HG, Hansen BT, Weber B (2011b) REE contents, REE minerals and Sm/ Nd isotopes of granite- and unconformity-related fluorite mineralization at the western edge of the Bohemian Massif: with special reference to the Nabburg-Wölsendorf District, SE Germany. Ore Geol Rev 40:132–148CrossRefGoogle Scholar
  41. Dill HG, Weber B, Botz R (2011c) The barite-bearing beryl-phosphate pegmatite Plössberg – a missing link between pegmatitic and vein-type barium mineralization in NE Bavaria, Germany. Geochemistry 71:377–387Google Scholar
  42. Dill HG, Skoda R, Weber B, Berner Z, Müller A, Bakker RJ (2012a) A newly-discovered swarm of shearzone-hosted Bi-As-Fe-Mg-P aplites and pegmatites in the Hagendorf-Pleystein pegmatite province, SE Germany: a step closer to the metamorphic root of pegmatites. Can Mineral, Special Volume dedicated to Petr Černý 50:943–947Google Scholar
  43. Dill HG, Weber B, Klosa D (2012b) Crystal morphology and mineral chemistry of monazite–zircon mineral assemblages in continental placer deposits (SE Germany): ore guide and provenance marker. J Geochem Explor 112:322–346CrossRefGoogle Scholar
  44. Dill HG, Skoda R, Weber B, Müller A, Berner ZA, Wemmer K, Balaban S-I (2013a) Mineralogical and chemical composition of the Hagendorf-North Pegmatite, SE Germany – a monographic study. Neues Jb Mineral Abh 190:281–318CrossRefGoogle Scholar
  45. Dill HG, Garrido MM, Melcher F, Gomez MC, Weber B, Luna LI, Bahr A (2013b) Sulfidic and non-sulfidic indium mineralization of the epithermal Au-Cu-Zn-Pb-Ag deposit San Roque (Provincia Rio Negro, SE Argentina) – with special reference to the “indium window” in zinc sulfide. Ore Geol Rev 51:103–128CrossRefGoogle Scholar
  46. Dill HG, Weber B, Botz R (2013c) Metalliferous duricrusts (“orecretes”) – markers of weathering: a mineralogical and climatic-geomorphological approach to supergene Pb-Zn-Cu-Sb-P mineralization on different parent materials. Neues Jb Mineral Abh 190:123–195CrossRefGoogle Scholar
  47. Dosbaba M, Novák M (2012) Quartz replacement by “kerolite” in graphic quartz–feldspar intergrowths from the Věžná I pegmatite, Czech Republic: a complex desilication process related to episyenitization. Can Mineral 50:1609–1622CrossRefGoogle Scholar
  48. Evensen JM, London D (2002) Experimental silicate mineral/melt partition coefficients for beryllium and the crustal Be cycle from migmatite to pegmatite. Geochim Cosmochim Acta 66:2239–2265CrossRefGoogle Scholar
  49. Fauth H, Hindel R, Siewers U, Zinner J (1985) Geochemischer Atlas der Bundesrepublik Deutschland: Verteilung von Schwermetallen in Wässern und Bachsedimenten. Bundesanstalt für Geowissenschaften und Rohstoffe, HannoverGoogle Scholar
  50. Finger F, Roberts MP, Haunschmid B, Schermaier A, Steyrer HP (1997) Variscan granitoids of central Europe: their typology, potential sources and tectonothermal relations. Mineral Petrol 61:67–96CrossRefGoogle Scholar
  51. Forster A, Strunz H, Tennsyson C (1967) Die Pegmatite des Oberpfälzer Waldes, insbesondere der Pegmatit von Hagendorf-Süd. Aufschluss Spec Pub 16:137–198Google Scholar
  52. Förster HJ, Seltmann R, Tischendorf G (1995) High-fluorine, low phosphorous A-type (post collision) silicic magmatism in Erzgebirge. In: 2nd symposium on Permo-Carboniferous igneous rocks, Terra Nostra, 7, Bonn, pp 32–35Google Scholar
  53. Franke W, Bram K (1988) Geowissenschaftliche Umfelduntersuchungen in der KTB-Arge 2, Ziele, Probleme, Projekte.- 1. KTB-Schwerpunkt-Kolloquium Giessen 1988. Zusammenfassung der Beiträge 16Google Scholar
  54. Frýda J, Breiter K (1995) Alkali feldspar as a main phosphorus reservoir in rare metal granites: three examples from the Bohemian Massif (Czech Republic). Terra Nova 7:315–320CrossRefGoogle Scholar
  55. Galadí-Enríquez E, Dörr W, Zulauf G, Galindo-Zaldívar J, Heidelbach F, Rohrmüller J (2010) Variscan deformation phases in the southwestern Bohemian Massif: new constraints from sheared granitoids. Z Dtsch Ges Geowiss 161:1–23Google Scholar
  56. Gebauer D (1993) Geochronologische Übersicht. In: Bauberger W (ed) Geologische Karte von Bayern 1.25000, Erläuterungen zum Blatt Nr. 6439 Tännesberg. Geologisches Landesamt Bayern, München, pp 10–22Google Scholar
  57. Gebauer D, Grünenfelder M (1982) Geological development of the Hercynian Belt of Europe based on age and origin of high-grade and high-pressure mafic and ultramafic rocks. In: 5 th international conference on geochronology, cosmochronology, and isotope geology, Nikko National Park, Japan, Abstracts 111–112, June 27–July 2Google Scholar
  58. Gerstenberger H, Haase G, Wemmer K (1995) Isotope systematics of the Variscan postkinematic granites in the Erzgebirge (E Germany). In: 2nd symposium on Permocarboniferous igneous rocks, Terra Nostra 7, Bonn, pp 36–41Google Scholar
  59. Glodny J, Grauert B, Krohe A, Vejnar Z, Fiala J (1995a) Altersinformation aus Pegmatiten der Westlichen Böhmischen Masse: ZEV, Teplá-Barrandium und Moldanubikum. 8. DFG-Kolloquium KTB, Giessen (abstract)Google Scholar
  60. Glodny J, Grauert B, Krohe A (1995b) Ordovizische Pegmatite in variszischen HT-Metamorphiten des KTB-Umfeldes: Hinweis auf hohe Stabilität des Rb–Sr-Systems in Muskoviten. Terra Nostra 95:98Google Scholar
  61. Glodny J, Grauert B, Fiala J, Vejnar Z, Krohe A (1998) Metapegmatites in the western Bohemian massif: ages of crystallization and metamorphic overprint, as constrained by U–Pb zircon, monazite, garnet, columbite and Rb–Sr muscovite data. Geol Rundsch/Int J Earth Sci 87:124–134Google Scholar
  62. Haak V (1989) Electrical resistivity studies in the vicinity of the KTB drill site, Oberpfalz. In: Emmermann R, Wohlenberg J (eds) The continental deep drilling program (KTB). Springer, Heidelberg, pp 224–241Google Scholar
  63. Hansen BT, Teufel S, Ahrendt H (1989) Geochronology of the Moldanubian-Saxothuringian Transition Zone, Northeast Bavaria. In: Emmermann R, Wohlenberg J (eds) The German continental deep drilling program (KTB). Springer, Berlin, pp 55–66CrossRefGoogle Scholar
  64. Harder H (1970) Boron content of sediments as a tool in facies analysis. Sediment Geol 4:153–175CrossRefGoogle Scholar
  65. Harrison TM, McDougall I (1980) Investigations of an intrusive contact, northwest Neslon New Zealand-I: thermal chronological and isotope constraints. Geochim Cosmochim Acta 44:1985–2003CrossRefGoogle Scholar
  66. Herzog T, Lehrberger G, Stettner G (1997) Goldvererzungen bei Neualbenreuth im Saxothuringikum des Waldsassener Schiefergebirge, Oberpfalz. Geologica Bavarica 102:173–206Google Scholar
  67. Hölzl S, Hofmann B, Köhler H (1993) U-Pb and Sm-Nd dating on a metabasite from the KTB main bore hole.-KTB-Report 93–2:392–392Google Scholar
  68. Janousek V, Finger F (2003) Whole-rock geochemistry of felsic granulites from the Gföhl Unit (Moldanubian Zone, Austria and Czech Republic): petrogenetic implications. Mitteilungen der Österreichischen Mineralogischen Gesellschaft 148:174–176Google Scholar
  69. Kastning J, Schlüter J (1994) Die Mineralien von Hagendorf und ihre Bestimmung, vol 2, Schriften des Mineralogischen Museums der Universität Hamburg. C. Weise Verlag, Munich, 95 ppGoogle Scholar
  70. Keller P, Von Knorring O (1989) Pegmatites at the Okatjimuku farm, Karibib, Namibia Part I: Phosphate mineral associations of the Clementine II pegmatite. Eur J Mineral 1:567–593CrossRefGoogle Scholar
  71. Knanna YK (1977) Note on the unusually high concentration of rubidium in a lithium mica from Govindpal area of Bastar district. J Geol Soc India 18:500–502Google Scholar
  72. Köhler H, Müller-Sohnius D (1976) Ergänzende Rb/Sr-Altersbestimmungen an Mineral- und Gesamtgesteinsproben des Leuchtenberger und Flossenbürger Granits, NE-Bayern. Neues Jb Mineral Monat 8:354–365Google Scholar
  73. Köhler H, Müller-Sohnius D, Cammann KC (1974) Rb/Sr-Altersbestimmungen an Mineral- und Gesamtgesteinsproben des Leuchtenberger und Flossenbürger Granits, NE-Bayern. Neues Jb Mineral Abh 123:63–85Google Scholar
  74. Köhler H, Propach G, Troll G (2008) Isotopische (Sr, Nd) Charakterisierung und Datierung Varistischer Granitoide der Moldanubischen Kruste Nordbayerns. Geologica Bavarica 110:170–203Google Scholar
  75. Kreuzer H, Henjes-Kunst F, Seidel E, Schüssler U, Bühn B (1993) Ar-Ar spectra on minerals from KTB and related medium pressure units. KTB-Report 93–2, Hannover, pp 133–136Google Scholar
  76. Küster D (1995) Rb-Sr isotope systematics of muscovite from the Pan-African granitic pegmatites of Western and Northeastern Africa. Mineral Petrol 55:71–83CrossRefGoogle Scholar
  77. Le Bas M (2007) Igneous classification revisited 4: Lamprophyres. Geol Today 23:167–168Google Scholar
  78. Lee SM, Holdaway MJ (1977) Significance of Fe-Mg cordierite stability relations on temperature pressure and water pressure in cordierite granulites. AGU monography 20 (The Earth’s Crust), pp 79–94Google Scholar
  79. Lehrberger G, Preinfalk C, Morteani G, Lahusen L (1990) Stratiforme Au-As-Bi-Vererzung in Cordierit-Sillimanit-Gneisen des Moldanubikums bei Oberviechtach-Unterlangau, Oberpfälzer Wald (NE-Bayern). Geologica Bavarica 95:133–176Google Scholar
  80. Lenz H (1986) Rb/Sr-Gesamtgesteins-Altersbestimmung am Weissenstadt-Markleuthener Porphyrgranit des Fichtelgebirges. Geol Jahrb E 34:67–76Google Scholar
  81. Linhardt E (2000) Der Beryllpegmatit der Feldspatgrube Maier, Püllersreuth. Lapis 25:13–23Google Scholar
  82. LOTEM-Group (1986a) Report on the LOTEM measurements OberpfalzGoogle Scholar
  83. LOTEM-Group (1986b) Poster 2nd conference of the KTB, SeeheimGoogle Scholar
  84. Lowenstern JB (1995) Applications of silicate-melt inclusions to the study of magmatic volatiles. In: Thompson JFH (ed) Magmas, fluids, and ore deposits, vol 23, Mineralogical Association of Canada, short course. Mineralogical Association of Canada, Nepean, pp 71–99Google Scholar
  85. Madel J (1967) Die Umgebung von Rabenstein bei Zwiesel. Geologica Bavarica 58:67–76Google Scholar
  86. Marakushev AA, Gramenitskiy YN (1983) Problem of the origin of pegmatites. Int Geol Rev 25:1179–1186CrossRefGoogle Scholar
  87. Marschall HR, Altherr R, Gmeling K, Kasztovszky Z (2009) Lithium, boron and chlorine as tracers for metasomatism in high-pressure metamorphic rocks: a case study from Syros (Greece). Mineral Petrol 95:291–302CrossRefGoogle Scholar
  88. Melleton J, Gloaguen E, Frei D, Novák M, Breiter K (2012) How are the emplacement of rare-element pegmatites, regional metamorphism and magmatism interrelated in the Moldanubian domain of the Variscan Bohemian Massif, Czech Republic? Can Mineral 50:1751–1773CrossRefGoogle Scholar
  89. Métais D, Chayes F (1963) Varieties of lamprophyres. Carnegie Inst Wash Year B 62:156–157Google Scholar
  90. Métais D, Chayes F (1964) Kersantites and vogesites: a possible example of group heteromorphism. Carnegie Inst Wash Year B 63:196–199Google Scholar
  91. Miethig A, von Drach V, Köhler H (2008) Sr- und Nd-Isotopensystematik an Gesteinen der Gabbroamphibolitmasse von Neukirchen b. Hl. Blut (Nordostbayern)-Kdyne (Tschechische Republik). Geologica Bavarica 110:129–169Google Scholar
  92. Morávek P, Lehrberger G (1997) Die genetische und geotektonische Klassifikation der Goldvererzungen in der Böhmischen Masse. Geologica Bavarica 102:7–31Google Scholar
  93. Mücke A (1987) Sekundäre Phosphatmineralien (Perloffit, Brasilianit, Mineralien der Kingsmountit-Gruppe) sowie Brochantit und die Zwieselit-Muschketoffit-Stilpnomelan-Pyrosmalith-Paragenese der 115-m-Sohle des Hagendorfer Pegmatits. Aufschluss 38:5–28Google Scholar
  94. Müller A, Breiter K, Novák JK (1998) Phosphorus-rich granites and pegmatites of Northern Oberpfalz and Western Bohemia. In: Breiter K (ed) Excursion guide: genetic significance of phosphorus in fractionated granites, International geological correlation program, IGCP 373. Peršlák, pp 93–105Google Scholar
  95. Novák M, Selway JB, Černý P, Hawthorne FC, Ottolini L (1999) Tourmaline of the elbaite–dravite series from an elbaite-subtype pegmatite at Bližná, southern Bohemia, Czech Republic. Eur J Mineral 11:557–568CrossRefGoogle Scholar
  96. Nriagu JO, Moore PB (1984) Phosphate minerals. Springer, Berlin/Heidelberg/New York 442 ppCrossRefGoogle Scholar
  97. Pfaffl F (1966) Die Blötz bei Bodenmais/Bayrischer Wald. Aufschluss 17:207–208Google Scholar
  98. Pieczka A (2007) Beusite and an unusual Mn-rich apatite from the Szklary granitic pegmatite, Lower Silesia, southwestern Poland. Can Mineral 45:901–914CrossRefGoogle Scholar
  99. Plaumann S (1976) Schweremessungen im Bereich Erbendorf. Niedersächsisches Landesamt für Bodenforschung, File No 75564, HannoverGoogle Scholar
  100. Plaumann S (1986) Die Schwerekarte der Oberpfalz und ihre Bezüge zu Strukturen der oberen Erdkruste. Geol Jahrb E 33:5–13Google Scholar
  101. Plaumann S (1995) Die Schwerekarte 1:500000 der Bundesrepublik Deutschland (Bouguer-Anomalien) Blatt Süd. Geol Jahrb E 53:3–13Google Scholar
  102. Pucher R (1986) Interpretation der magnetischen Anomalie von Erbendorf (Oberpfalz) und dazugehörige gesteinsmagnetische Untersuchungen. Geol Jahrb E 33:31–52Google Scholar
  103. Pucher R, Wonik T (1990) Eine Karte der Magnetfeldanomalien für die Umgebung der KTB-Bohrlokation in der Oberpfalz. Geol Jahrb E 44:3–13Google Scholar
  104. Pucher R, Bader K, Stettner G, Wonik T (1990) Eine Karte der Magnetfeldanomalien für die Umgebung der KTB-Bohrlokation in der Oberpfalz. Geol Jahrb E 44:1–48Google Scholar
  105. Richter P, Stettner G (1979) Geochemische und petrographische Untersuchungen der Fichtelgebirgsgranite. Geologica Bavarica 78:1–144Google Scholar
  106. Richter P, Stettner G (1986) Untersuchungen zur Form und räumlichen Lage der Granitplutone im Projektgebiet der Lokation Oberpfalz. German Science Foundation- Continental Deep Drilling Program of the Federal Republic of Germany, Final reportGoogle Scholar
  107. Rock NMS (1991) Lamprophyres (with contributions by D. R. Bowes & A. E. Wright). Glasgow & London: Blackie, New York: Van Nostrand, Reinhold. RockGoogle Scholar
  108. Rohrmüller J (1998) Geologische Karte von Bayern 1:25000 Erläuterungen zum Blatt Nr. 6240 Flossenbürg. Geological Survey of Bavaria, München, 95 ppGoogle Scholar
  109. Rolland Y, Cox S, Boullie AM, Pennacchioni G, Mancktelow N (2003) Rare earth and trace element mobility in mid-crustal shear zones: insights from the Mont Blanc Massif (Western Alps). Earth Planet Sci Lett 214:203–219CrossRefGoogle Scholar
  110. Romer RL, Smeds S-A (1994) Implications of U-Pb age of columbite-tantalites from granitic pegmatites for the Paleoproterozoic accretion of 1.90-1.85 Ga magmatic arcs to the Baltic Shield. Precambrian Res 67:141–158CrossRefGoogle Scholar
  111. Romer RL, Smeds S-A (1996) U-Pb columbite ages of pegmatites from Sveconorvegian terranes in southwestern Sweden. Precambrian Res 76:15–30CrossRefGoogle Scholar
  112. Romer RL, Smeds S-A (1997) U-Pb columbite chronology of post-kinematic Paleoproterozoic pegmatites in Sweden. Precambrian Res 82:85–99CrossRefGoogle Scholar
  113. Schaaf P, Sperling T, Müller-Sohnius D (2008) Pegmatites from the Bavarian Forest, SE Germany: geochronology, geochemistry and mineralogy. Geologica Bavarica 108:204–303Google Scholar
  114. Seifert T (2008) Metallogeny and petrogenesis of lamprophyres in the Mid-European Variscides – Postcollisional magmatism and its relationship to Late Variscan ore forming processes in the Erzgebirge (Bohemian Massif). IOS Press BV, AmsterdamGoogle Scholar
  115. Seltmann R, Förster HJ, Gottesmann B, Sala M, Wolf D, Štemprok M (1998) The Zinnwald greisen deposit related to post-collisional A-type silicic magmatism in the Variscan eastern Erzgebirge/Krušne Hory. In: Breiter K (ed) Excursion guide: genetic significance of phosphorus in fractionated granites, International geological correlation program, IGCP 373. Peršlák, pp 33–50Google Scholar
  116. Siebel W, Höhndorf A, Wendt I (1995a) Origin of late Variscan granitoids from NE Bavaria: Germany, exemplified by REE and Nd isotope systematics. Chem Geol 125:249–270CrossRefGoogle Scholar
  117. Siebel W, Breiter K, Höhndorf A, Wendt I, Henjes-Kunst F (1995b) Preliminary note on age relationships and Nd isotope composition of granitoids from the Bärnau-Rozvadov pluton, Western Bohemia. In: 8th conference of the German Continental Deep Drilling Programme (KTB) Giessen, 25–26 May 1995Google Scholar
  118. Siebel W, Trzebski R, Stettner G, Hecht L, Casten U, Höhndorf A, Müller P (1997) Granitoid magmatism of the NW Bohemian Massif related: gravity data composition, age relations and phase concept. Geol Rundsch 86:45–63CrossRefGoogle Scholar
  119. Stettner G (1990) KTB Umfeldgeologie. Bayerisches Geologisches Landesamt, München, 31 ppGoogle Scholar
  120. Strunz H (1952) Mineralien und Lagerstätten in Ostbayern. Acta Albertina Ratsibonensia 20:81–203Google Scholar
  121. Strunz H (1962) Die Uranfunde in Bayern von 1804 bis 1962 (einschliesslich der radiometrischen Messergebnisse). Naturwissesnchaftlicher Verein zu Regensburg, Regensburg, 92 ppGoogle Scholar
  122. Strunz H (1971) Mineralien und Lagerstätten des Bayerischen Waldes. Aufschluss 21:7–91Google Scholar
  123. Strunz H (1974) Granites and pegmatites of in eastern Bavaria. Fortschritte der Mineralogie 52 Beihefte 1: 1–32Google Scholar
  124. Strunz H, Forster A, Tennyson C (1975) Die Pegmatite der nördlichen Oberpfalz. Aufschluss 26:117–189Google Scholar
  125. Taylor SR, McLennan SM (1995) The geochemical evolution of the continental crust. Rev Geophys 33:241–265CrossRefGoogle Scholar
  126. Teng F-Z, McDonough WF, Rudnick RL, Dalpé C, Tomascak PB, Chappell BW, Gao S (2004) Lithium isotopic composition and concentration of the upper continental crust. Geochim Cosmochim Acta 68:4167–4178CrossRefGoogle Scholar
  127. Tennyson C (1981) Zur Mineralogie der Pegmatite des Bayerischen Waldes. Aufschluss 31:49–73Google Scholar
  128. Tollari N, Toplis MJ, Barnes S-J (2006) Predicting phosphate saturation in silicate magmas: an experimental study of the effects of melt composition and temperature. Geochim Cosmochim Acta 70:1518–1536CrossRefGoogle Scholar
  129. Vasyukova EA, Izokh AE, Borisenko AS, Pavlova GG, Sukhorukov VP, Anh TT (2011) Early Mesozoic lamprophyres in Gorny Altai: petrology and age boundaries. Russ Geol Geophys 52:1574–1591CrossRefGoogle Scholar
  130. Velichkien VI, Chernyhov IV, Simonova LI, Yudintsev SV (1994) Geotectonic position, petrochemical and geochronological features of the Younger Granite Complex in the Krušne Hory (Erzgebirge) of the Bohemian Massif. J Czech Geol Soc 39:11Google Scholar
  131. Vrána S, Blümel P, Petrakakis K (1995) Metamorphic evolution. In: Dallmeyer RD, Franke W, Weber K (eds) Pre-permian geology of central and eastern Europe. Springer, Heidelberg/Berlin/Tokyo, pp 453–466CrossRefGoogle Scholar
  132. Weber K, Vollbrecht A (1989) The crustal structure at the KTB Drill Site, Oberpfalz. In: Emmermann R, Wohlenberg J (eds) The continental deep drilling program (KTB). Springer, Heidelberg, pp 5–36CrossRefGoogle Scholar
  133. Wemmer K, Ahrendt H (1993) Age determination on retrograde processes in Rocks of the KTB and the surrounding area. KTB-Report 93-2, pp 129–131Google Scholar
  134. Wendt I, Kreuzer H, Müller P, Schmidt H (1986) Gesteins- und Mineraldatierungen des Falkenberger Granits. Geol Jahrb E 34:5–67Google Scholar
  135. Wendt I, Carl C, Kreuzer H, Müller P, Stettner G (1992) Ergänzende Messungen zum Friedenfelser Granite Steinwald und radiometrische Datierung des Ganggranite im Falkenberger Granit. Geol Jahrb A137:3–24Google Scholar
  136. Wendt I, Ackermann H, Carl C, Kreuzer H, Müller P, Stettner G (1994) Rb/Sr-Gesamtgesteins- und K/Ar-Glimmerdatierungen der Granite von Flossenbürg und Bärnau. Geol Jahrb E51:3–29Google Scholar
  137. Wooley AR, Bergman SC, Edgar AD, Le Bas MJ, Mitchell RH, Rock NS, Smith BHS (1996) Classification of lamprophyres, lamproites, kimberlites, and the kalsilitic, melilitic, and leucitic rocks. Can Mineral 34:175–186Google Scholar
  138. Ziehr H (1957) Uranvorkommen in Bayern. Die Atomwirtschaft 2:193–196Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Harald G. Dill
    • 1
  1. 1.Gottfried-Wilhelm-Leibniz UniversityHannoverGermany

Personalised recommendations