Skip to main content

Pegmatites and Their Country Rocks in the Central European Variscides

  • Chapter
  • 628 Accesses

Part of the book series: Modern Approaches in Solid Earth Sciences ((MASE,volume 15))

Abstract

Aplites and pegmatites can be correlated with their country rocks using the temporal, the compositional/chemical and physical relationships. The emplacement of pegmatitic rocks began during the early Paleozoic (470–440 Ma) which are encountered as metapegmatites in nappe units in the Bohemian Massif, proper, and in the Ötztal Massif within the Alpine Mts. Range. At the end of the MP-HT metamorphism around 370 Ma pegmatoids came into existence in the allochthonous units. From the core to the margin near the collision zone the granites and the pegmatites get younger. The belong to the Variscan heat event, but a close-up view of some of the pegmatites bear witness of an older cooling age of the muscovite from the HPPP pegmatite than the whole-rock age of the nearby Flossenbürg granite. The pegmatite show different ages as the major-rock-forming silicates and rare-element minerals, e.g. columbite are considered. Considering the element assemblage of the pegmatites and aplites in the Hagendorf-Pleystein-Pegmatite Province reveals that the element has not been derived from one source only. Intracrustal sources may be claimed for Li, F, U, Sn, B, P, As and Mn. Niobium, beryllium and bismuth (?) are of subcrustal derivation. In addition, there are subcrustal - intermediate repositories as it is the case with the Zn, REE and Y. Apart from the granitic intrusive rocks and metamorphic rocks, another group of subcrustal magmatic rocks, (meta)-lamprophyres, has not been drawn the attention to, which they deserve. If the fractionation and zonation in a pegmatite field or province is investigated and an attempt is made to compare these individual pegmatites and aplites with a nearby granite some critical points have to be considered.

  1. 1.

    the direction of fractionation in and emplacement of the granite

  2. 2.

    the polyphase zonation within the pegmatite field or province.

The Flossenbürg granite shows a E-W direction of emplacement and an opposite trend of fractionation. The HPPP, which is situated to the south of the afore-mentioned granite, shows an emplacement from the SW towards the NE and a polyphase zonation as a function of the mineral association. With this in mind the granites and pegmatites are supposed to be part of the Variscan thermal event but unrelated with regard to the structural and fractionational processes. They are sisters but not parents and children. Geophysical surveys lend support to this structural-compositional plan. The Flossenbürg Granite dips away from the ZEV metamorphics towards the E, similar to its northern counterpart, the Tirschenreuth Granite. South of the Oberpfalz granites, an ENE to NE trending deep structure, called Luhe Line exists. It is marked by ultrabasic to basic rocks of mantle affiliation. At the point of intersection, where it is crossed by another deep structure, this strong linear magnetic anomaly is perforated by a couple of negative rounded to oval-shaped magnetic anomalies like a “Swiss Cheese”. The zone of intersection coincides with the cluster pegmatites and aplites of the HPPP.A low-resistivity zone known from the foreland dips down under the basement. The low resistivity layer at shallow depth was interpreted as an accumulation of graphitic matter or highly saline waters. Graphitic material accounts for the deep low-resistivity zone. Seismic methods were extensively used during DEKORP. They show a series of southward dipping reflectors which formed the guide-lines for the differentiation within the pegmatite-aplite fields located between the core zone and collision front and mark the nape stacking at the western edge of the Bohemian Massif. The intersection of these nappe piles and deep-seated lineamentary fault zone are of ore control for the HPPP.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aldrich LT, Davis GL, Tilton GR, Wetherill GW (1956) Radioactive ages of minerals from the Brown Derby Mine and the Quartz Creek Granite near Gunnison, Colorado. J Geophys Res 61:215–232

    Article  Google Scholar 

  • Bauberger W (1957) Über die “Albitpegmatite” der Münchberger Gneissmasse und ihre Nebengesteine. Geologica Bavarica 36:5–77

    Google Scholar 

  • Besang C, Harre W, Kreuzer H, Lenz H, Müller P, Wendt I (1976) Radiometrische Datierung, geochemische und petrographische Untersuchungen der Fichtelgebirgsgranite. Geol Jahrb E 8:3–71

    Google Scholar 

  • Bierlein FP, Groves DI, Cawood PA (2009) Metallogeny of accretionary orogens-the connection between lithospheric processes and metal endowment. Ore Geol Rev 36:282–292

    Article  Google Scholar 

  • Breiter K (1998a) Granites of the Krušne Hory/ Erzgebirge Mts. Slavkovský Les area. In: Breiter K (ed) Excursion guide: genetic significance of phosphorus in fractionated granites, International geological correlation program, IGCP 373. Czech Geological Survey, Peršlák, pp 21–31

    Google Scholar 

  • Breiter K (1998b) Phosphorus- and fluorine-rich granite system at Podlesi. In: Breiter K (ed) Excursion guide: genetic significance of phosphorus in fractionated granites, International geological correlation program, IGCP 373. Czech Geological Survey, Peršlák, pp 59–76

    Google Scholar 

  • Breiter K (1998c) P-rich muscovite granites-latest product of two-mica granites fractionation in the South Bohemian Pluton. In: Breiter K (ed) Excursion guide: genetic significance of phosphorus in fractionated granites, International geological correlation program, IGCP 373. Czech Geological Survey, Peršlák, pp 107–126

    Google Scholar 

  • Breiter K, Siebel W (1995) Granitoids in the Rozvadov pluton. Geol Rundsch 84:506–519

    Article  Google Scholar 

  • Breiter K, Fryda J, Seltmann R, Thomas R (1997) Mineralogical evidence for two magmatic stages in the evolution of an extremely fractionated P-rich rare-metal granite: the Podlesı stock, Krušne Hory, Czech Republic. J Petrol 38:1723–1739

    Article  Google Scholar 

  • Broska I, Williams CT, Uher P, Koneçný P, Leichmann J (2004) The geochemistry of phosphorus in different granite suites of the Western Carpathians, Slovakia: the role of apatite and P-bearing feldspar. Chem Geol 205:1–15

    Article  Google Scholar 

  • Bültemann W (1954) Mineralien aus den Wölsendorfer Flussspatgruben. Aufschluss 5:211–212

    Google Scholar 

  • Carl C, Dill HG (1983) Uranium disequilibria and modern redistribution phenomena in alteration zones in the Höhensteinweg uranium occurrence. Uranium 1:113–125

    Google Scholar 

  • Carl C, Dill HG (1984) U-Pb Datierungen an Pechblenden aus dem Nabburg-Wölsendorfer Flussspatrevier. Geol Jahrb D 63:59–76

    Google Scholar 

  • Carl C, Dill HG (1985) Age of secondary uranium mineralization in the basement rocks of northeastern Bavaria, F.R.G. Chem Geol 52:295–316

    Google Scholar 

  • Černý P (1982) Mineralogy of rubidium and cesium. In: Černý P (ed) Granitic pegmatites, science and industry, Short course handbook, 8. Mineralogical Association of Canada, Toronto, pp 149–162

    Google Scholar 

  • Černý P, Povondra P (1966) Beryllian cordierite from Věžná: (Na+K)+Be ⇒ Al. Neues Jb Mineral Monat 1966:36–44

    Google Scholar 

  • Claus G (1936) Schwerminerale aus kristallinen Gesteinen des Gebietes zwischen Passau und Cham. Neues Jahrbuch Mineralogie Beilage 71:1–58

    Google Scholar 

  • Cruft EF (1966) Minor elements in igneous and metamorphic apatite. Geochim Cosmochim Acta 30:375–398

    Article  Google Scholar 

  • Cuney M, Barbey P (2014) Uranium, rare metals and granulite facies metamorphism. Geosci Front 5:729–745

    Article  Google Scholar 

  • De Jong G, Rotherham J, Phillips GN, Williams PJ (1997) Mobility of rare-earth elements and copper during shear-zone-related retrograde metamorphism. Geol Mijnb 76:311–319

    Article  Google Scholar 

  • Dickin AP (2005) Radiogenic isotope geology. Cambridge University Press, Cambridge, 471 pp

    Book  Google Scholar 

  • Dill HG (1979) Der Feldspat-Bergbau in der Münchberger Gneismasse. Bergbau 30:301–304

    Google Scholar 

  • Dill HG (1981) Zwei selenid-führende Uran-Mineralisationen aus dem ostbayerischen Moldanubikum und ihre mögliche Bedeutung für die Klärung der Lagerstättengenese. Geol Jahrb D 48:37–57

    Google Scholar 

  • Dill HG (1982) Geologie und Mineralogie des Uranvorkommens am Höhensteinweg bei Poppenreuth (NE Bayern) – Ein Lagerstättenmodell. Geol Jahrb D 50:3–83

    Google Scholar 

  • Dill HG (1983a) On the formation of the vein-type uranium “yellow ores” from the Schwarzach-Area (NE-Bavaria, Germany) and on the behavior of P, As, V, and Se during supergene processes. Geol Rundsch/Int J Earth Sci 72:955–980

    Google Scholar 

  • Dill HG (1983b) Vein- and metasedimentary-hosted carbonaceous matter and phosphorus from NE Bavaria (F.R. Germany) and their implication on syngenetic and epigenetic uranium concentration. Neues Jb Mineral Abh 148:1–21

    Google Scholar 

  • Dill HG (1986) Fault-controlled uranium black ore mineralization from the western edge of the Bohemian Massif (NE Bavaria/F.R. Germany). In: Fuchs HD (ed) Vein-type uranium deposits, International Atomic Energy Agency. The Agency, Vienna, pp 275–291

    Google Scholar 

  • Dill HG (1990) Chemical basin analysis of the metalliferous “Variegated Metamorphics” of the Bodenmais ore district (F.R. of Germany). Ore Geol Rev 5:151–173

    Article  Google Scholar 

  • Dill HG, Klosa D (2011) Heavy-mineral-based provenance analysis of Mesozoic continental-marine sediments at the western edge of the Bohemian Massif, SE Germany: with special reference to Fe-Ti minerals and the crystal morphology of heavy minerals. Int J Earth Sci 100:1497–1513

    Article  Google Scholar 

  • Dill HG, Kolb SG (1986) The Grossschloppen-Hebanz uranium occurrences: a prototype of mineralized structure zones characterized by desilification and silification. In: Fuchs HD (ed) Vein-type uranium deposits, International Atomic Energy Agency. The Agency, Vienna, pp 261–274

    Google Scholar 

  • Dill HG, Sachsenhofer RF, Grecula P, Sasvári T, Palinkaš LA, Borojević-Šoštarić S, Strmić-Palinkaš S, Prochaska W, Garuti G, Zaccarini F, Arbouille D, Schulz H-M (2008a) Fossil fuels, ore – and industrial minerals. In: McCann T (ed) Geology of Central Europe, Special publication. Geological Society of London, London, pp 1341–1449

    Google Scholar 

  • Dill HG, Sachsenhofer RF, Grecula P, Sasvári T, Palinkaš LA, Borojević-Šoštarić S, Strmić-Palinkaš S, Prochaska W, Garuti G, Zaccarini F, Arbouille D, Schulz H-M, Locmelis B (2008b) The origin of mineral and energy resources of Central Europe (map 1: 2500000). Geological Society of London, London (on CD ROM)

    Google Scholar 

  • Dill HG, Melcher F, Gerdes A, Weber B (2008c) The origin and zoning of hypogene and supergene Fe-Mn-Mg-Sc-U-REE-Zn phosphate mineralization from the newly discovered Trutzhofmühle aplite (Hagendorf pegmatite province, Germany). Can Mineral 46:1131–1157

    Article  Google Scholar 

  • Dill HG, Weber B, Gerdes A, Melcher F (2009a) The Fe-Mn phosphate aplite “Silbergrube” near Waidhaus, Germany: epithermal phosphate mineralization in the Hagendorf-Pleystein pegmatite province. Mineral Mag 72:1143–1168

    Google Scholar 

  • Dill HG, Weber B, Kaufhold S (2009b) The origin of siderite-goethite-phosphate mineralization in the karst-related faultbound iron ore deposit Auerbach, Germany, a clue to the timing of hypogene and supergene Fe-Al phosphates in NE Bavaria. Neues Jb Mineral Abh 186:283–307

    Article  Google Scholar 

  • Dill HG, Gerdes A, Weber B (2010a) Age and mineralogy of supergene uranium minerals – tools to unravel geomorphological and palaeohydrological processes in granitic terrains (Bohemian Massif, SE Germany). Geomorphology 117:44–65

    Article  Google Scholar 

  • Dill HG, Hansen B, Keck E, Weber B (2010b) Cryptomelane a tool to determine the age and the physical-chemical regime of a Plio-Pleistocene weathering zone in a granitic terrain (Hagendorf, SE Germany). Geomorphology 121:370–377

    Article  Google Scholar 

  • Dill HG, Kaufhold S, Weber B, Gerdes A (2010c) Clay mineralogy and LA-ICP-MS dating of a supergene U-Cu- mineralization bearing nontronite at Nabburg-Wölsendorf, SE Germany. Can Mineral 48:497–511

    Article  Google Scholar 

  • Dill HG, Škoda R, Weber B (2011a) Preliminary results of a newly-discovered lazulite-scorzalite pegmatite-aplite in the Hagendorf-Pleystein Pegmatite Province, SE Germany. Asociación Geológica Argentina, Serie D, Publicación Especial Nº 14. Pegmatite, Mendoza, Argentina, pp 79–81

    Google Scholar 

  • Dill HG, Hansen BT, Weber B (2011b) REE contents, REE minerals and Sm/ Nd isotopes of granite- and unconformity-related fluorite mineralization at the western edge of the Bohemian Massif: with special reference to the Nabburg-Wölsendorf District, SE Germany. Ore Geol Rev 40:132–148

    Article  Google Scholar 

  • Dill HG, Weber B, Botz R (2011c) The barite-bearing beryl-phosphate pegmatite Plössberg – a missing link between pegmatitic and vein-type barium mineralization in NE Bavaria, Germany. Geochemistry 71:377–387

    Google Scholar 

  • Dill HG, Skoda R, Weber B, Berner Z, Müller A, Bakker RJ (2012a) A newly-discovered swarm of shearzone-hosted Bi-As-Fe-Mg-P aplites and pegmatites in the Hagendorf-Pleystein pegmatite province, SE Germany: a step closer to the metamorphic root of pegmatites. Can Mineral, Special Volume dedicated to Petr Černý 50:943–947

    Google Scholar 

  • Dill HG, Weber B, Klosa D (2012b) Crystal morphology and mineral chemistry of monazite–zircon mineral assemblages in continental placer deposits (SE Germany): ore guide and provenance marker. J Geochem Explor 112:322–346

    Article  Google Scholar 

  • Dill HG, Skoda R, Weber B, Müller A, Berner ZA, Wemmer K, Balaban S-I (2013a) Mineralogical and chemical composition of the Hagendorf-North Pegmatite, SE Germany – a monographic study. Neues Jb Mineral Abh 190:281–318

    Article  Google Scholar 

  • Dill HG, Garrido MM, Melcher F, Gomez MC, Weber B, Luna LI, Bahr A (2013b) Sulfidic and non-sulfidic indium mineralization of the epithermal Au-Cu-Zn-Pb-Ag deposit San Roque (Provincia Rio Negro, SE Argentina) – with special reference to the “indium window” in zinc sulfide. Ore Geol Rev 51:103–128

    Article  Google Scholar 

  • Dill HG, Weber B, Botz R (2013c) Metalliferous duricrusts (“orecretes”) – markers of weathering: a mineralogical and climatic-geomorphological approach to supergene Pb-Zn-Cu-Sb-P mineralization on different parent materials. Neues Jb Mineral Abh 190:123–195

    Article  Google Scholar 

  • Dosbaba M, Novák M (2012) Quartz replacement by “kerolite” in graphic quartz–feldspar intergrowths from the Věžná I pegmatite, Czech Republic: a complex desilication process related to episyenitization. Can Mineral 50:1609–1622

    Article  Google Scholar 

  • Evensen JM, London D (2002) Experimental silicate mineral/melt partition coefficients for beryllium and the crustal Be cycle from migmatite to pegmatite. Geochim Cosmochim Acta 66:2239–2265

    Article  Google Scholar 

  • Fauth H, Hindel R, Siewers U, Zinner J (1985) Geochemischer Atlas der Bundesrepublik Deutschland: Verteilung von Schwermetallen in Wässern und Bachsedimenten. Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover

    Google Scholar 

  • Finger F, Roberts MP, Haunschmid B, Schermaier A, Steyrer HP (1997) Variscan granitoids of central Europe: their typology, potential sources and tectonothermal relations. Mineral Petrol 61:67–96

    Article  Google Scholar 

  • Forster A, Strunz H, Tennsyson C (1967) Die Pegmatite des Oberpfälzer Waldes, insbesondere der Pegmatit von Hagendorf-Süd. Aufschluss Spec Pub 16:137–198

    Google Scholar 

  • Förster HJ, Seltmann R, Tischendorf G (1995) High-fluorine, low phosphorous A-type (post collision) silicic magmatism in Erzgebirge. In: 2nd symposium on Permo-Carboniferous igneous rocks, Terra Nostra, 7, Bonn, pp 32–35

    Google Scholar 

  • Franke W, Bram K (1988) Geowissenschaftliche Umfelduntersuchungen in der KTB-Arge 2, Ziele, Probleme, Projekte.- 1. KTB-Schwerpunkt-Kolloquium Giessen 1988. Zusammenfassung der Beiträge 16

    Google Scholar 

  • Frýda J, Breiter K (1995) Alkali feldspar as a main phosphorus reservoir in rare metal granites: three examples from the Bohemian Massif (Czech Republic). Terra Nova 7:315–320

    Article  Google Scholar 

  • Galadí-Enríquez E, Dörr W, Zulauf G, Galindo-Zaldívar J, Heidelbach F, Rohrmüller J (2010) Variscan deformation phases in the southwestern Bohemian Massif: new constraints from sheared granitoids. Z Dtsch Ges Geowiss 161:1–23

    Google Scholar 

  • Gebauer D (1993) Geochronologische Übersicht. In: Bauberger W (ed) Geologische Karte von Bayern 1.25000, Erläuterungen zum Blatt Nr. 6439 Tännesberg. Geologisches Landesamt Bayern, München, pp 10–22

    Google Scholar 

  • Gebauer D, Grünenfelder M (1982) Geological development of the Hercynian Belt of Europe based on age and origin of high-grade and high-pressure mafic and ultramafic rocks. In: 5 th international conference on geochronology, cosmochronology, and isotope geology, Nikko National Park, Japan, Abstracts 111–112, June 27–July 2

    Google Scholar 

  • Gerstenberger H, Haase G, Wemmer K (1995) Isotope systematics of the Variscan postkinematic granites in the Erzgebirge (E Germany). In: 2nd symposium on Permocarboniferous igneous rocks, Terra Nostra 7, Bonn, pp 36–41

    Google Scholar 

  • Glodny J, Grauert B, Krohe A, Vejnar Z, Fiala J (1995a) Altersinformation aus Pegmatiten der Westlichen Böhmischen Masse: ZEV, Teplá-Barrandium und Moldanubikum. 8. DFG-Kolloquium KTB, Giessen (abstract)

    Google Scholar 

  • Glodny J, Grauert B, Krohe A (1995b) Ordovizische Pegmatite in variszischen HT-Metamorphiten des KTB-Umfeldes: Hinweis auf hohe Stabilität des Rb–Sr-Systems in Muskoviten. Terra Nostra 95:98

    Google Scholar 

  • Glodny J, Grauert B, Fiala J, Vejnar Z, Krohe A (1998) Metapegmatites in the western Bohemian massif: ages of crystallization and metamorphic overprint, as constrained by U–Pb zircon, monazite, garnet, columbite and Rb–Sr muscovite data. Geol Rundsch/Int J Earth Sci 87:124–134

    Google Scholar 

  • Haak V (1989) Electrical resistivity studies in the vicinity of the KTB drill site, Oberpfalz. In: Emmermann R, Wohlenberg J (eds) The continental deep drilling program (KTB). Springer, Heidelberg, pp 224–241

    Google Scholar 

  • Hansen BT, Teufel S, Ahrendt H (1989) Geochronology of the Moldanubian-Saxothuringian Transition Zone, Northeast Bavaria. In: Emmermann R, Wohlenberg J (eds) The German continental deep drilling program (KTB). Springer, Berlin, pp 55–66

    Chapter  Google Scholar 

  • Harder H (1970) Boron content of sediments as a tool in facies analysis. Sediment Geol 4:153–175

    Article  Google Scholar 

  • Harrison TM, McDougall I (1980) Investigations of an intrusive contact, northwest Neslon New Zealand-I: thermal chronological and isotope constraints. Geochim Cosmochim Acta 44:1985–2003

    Article  Google Scholar 

  • Herzog T, Lehrberger G, Stettner G (1997) Goldvererzungen bei Neualbenreuth im Saxothuringikum des Waldsassener Schiefergebirge, Oberpfalz. Geologica Bavarica 102:173–206

    Google Scholar 

  • Hölzl S, Hofmann B, Köhler H (1993) U-Pb and Sm-Nd dating on a metabasite from the KTB main bore hole.-KTB-Report 93–2:392–392

    Google Scholar 

  • Janousek V, Finger F (2003) Whole-rock geochemistry of felsic granulites from the Gföhl Unit (Moldanubian Zone, Austria and Czech Republic): petrogenetic implications. Mitteilungen der Österreichischen Mineralogischen Gesellschaft 148:174–176

    Google Scholar 

  • Kastning J, Schlüter J (1994) Die Mineralien von Hagendorf und ihre Bestimmung, vol 2, Schriften des Mineralogischen Museums der Universität Hamburg. C. Weise Verlag, Munich, 95 pp

    Google Scholar 

  • Keller P, Von Knorring O (1989) Pegmatites at the Okatjimuku farm, Karibib, Namibia Part I: Phosphate mineral associations of the Clementine II pegmatite. Eur J Mineral 1:567–593

    Article  Google Scholar 

  • Knanna YK (1977) Note on the unusually high concentration of rubidium in a lithium mica from Govindpal area of Bastar district. J Geol Soc India 18:500–502

    Google Scholar 

  • Köhler H, Müller-Sohnius D (1976) Ergänzende Rb/Sr-Altersbestimmungen an Mineral- und Gesamtgesteinsproben des Leuchtenberger und Flossenbürger Granits, NE-Bayern. Neues Jb Mineral Monat 8:354–365

    Google Scholar 

  • Köhler H, Müller-Sohnius D, Cammann KC (1974) Rb/Sr-Altersbestimmungen an Mineral- und Gesamtgesteinsproben des Leuchtenberger und Flossenbürger Granits, NE-Bayern. Neues Jb Mineral Abh 123:63–85

    Google Scholar 

  • Köhler H, Propach G, Troll G (2008) Isotopische (Sr, Nd) Charakterisierung und Datierung Varistischer Granitoide der Moldanubischen Kruste Nordbayerns. Geologica Bavarica 110:170–203

    Google Scholar 

  • Kreuzer H, Henjes-Kunst F, Seidel E, Schüssler U, Bühn B (1993) Ar-Ar spectra on minerals from KTB and related medium pressure units. KTB-Report 93–2, Hannover, pp 133–136

    Google Scholar 

  • Küster D (1995) Rb-Sr isotope systematics of muscovite from the Pan-African granitic pegmatites of Western and Northeastern Africa. Mineral Petrol 55:71–83

    Article  Google Scholar 

  • Le Bas M (2007) Igneous classification revisited 4: Lamprophyres. Geol Today 23:167–168

    Google Scholar 

  • Lee SM, Holdaway MJ (1977) Significance of Fe-Mg cordierite stability relations on temperature pressure and water pressure in cordierite granulites. AGU monography 20 (The Earth’s Crust), pp 79–94

    Google Scholar 

  • Lehrberger G, Preinfalk C, Morteani G, Lahusen L (1990) Stratiforme Au-As-Bi-Vererzung in Cordierit-Sillimanit-Gneisen des Moldanubikums bei Oberviechtach-Unterlangau, Oberpfälzer Wald (NE-Bayern). Geologica Bavarica 95:133–176

    Google Scholar 

  • Lenz H (1986) Rb/Sr-Gesamtgesteins-Altersbestimmung am Weissenstadt-Markleuthener Porphyrgranit des Fichtelgebirges. Geol Jahrb E 34:67–76

    Google Scholar 

  • Linhardt E (2000) Der Beryllpegmatit der Feldspatgrube Maier, Püllersreuth. Lapis 25:13–23

    Google Scholar 

  • LOTEM-Group (1986a) Report on the LOTEM measurements Oberpfalz

    Google Scholar 

  • LOTEM-Group (1986b) Poster 2nd conference of the KTB, Seeheim

    Google Scholar 

  • Lowenstern JB (1995) Applications of silicate-melt inclusions to the study of magmatic volatiles. In: Thompson JFH (ed) Magmas, fluids, and ore deposits, vol 23, Mineralogical Association of Canada, short course. Mineralogical Association of Canada, Nepean, pp 71–99

    Google Scholar 

  • Madel J (1967) Die Umgebung von Rabenstein bei Zwiesel. Geologica Bavarica 58:67–76

    Google Scholar 

  • Marakushev AA, Gramenitskiy YN (1983) Problem of the origin of pegmatites. Int Geol Rev 25:1179–1186

    Article  Google Scholar 

  • Marschall HR, Altherr R, Gmeling K, Kasztovszky Z (2009) Lithium, boron and chlorine as tracers for metasomatism in high-pressure metamorphic rocks: a case study from Syros (Greece). Mineral Petrol 95:291–302

    Article  Google Scholar 

  • Melleton J, Gloaguen E, Frei D, Novák M, Breiter K (2012) How are the emplacement of rare-element pegmatites, regional metamorphism and magmatism interrelated in the Moldanubian domain of the Variscan Bohemian Massif, Czech Republic? Can Mineral 50:1751–1773

    Article  Google Scholar 

  • Métais D, Chayes F (1963) Varieties of lamprophyres. Carnegie Inst Wash Year B 62:156–157

    Google Scholar 

  • Métais D, Chayes F (1964) Kersantites and vogesites: a possible example of group heteromorphism. Carnegie Inst Wash Year B 63:196–199

    Google Scholar 

  • Miethig A, von Drach V, Köhler H (2008) Sr- und Nd-Isotopensystematik an Gesteinen der Gabbroamphibolitmasse von Neukirchen b. Hl. Blut (Nordostbayern)-Kdyne (Tschechische Republik). Geologica Bavarica 110:129–169

    Google Scholar 

  • Morávek P, Lehrberger G (1997) Die genetische und geotektonische Klassifikation der Goldvererzungen in der Böhmischen Masse. Geologica Bavarica 102:7–31

    Google Scholar 

  • Mücke A (1987) Sekundäre Phosphatmineralien (Perloffit, Brasilianit, Mineralien der Kingsmountit-Gruppe) sowie Brochantit und die Zwieselit-Muschketoffit-Stilpnomelan-Pyrosmalith-Paragenese der 115-m-Sohle des Hagendorfer Pegmatits. Aufschluss 38:5–28

    Google Scholar 

  • Müller A, Breiter K, Novák JK (1998) Phosphorus-rich granites and pegmatites of Northern Oberpfalz and Western Bohemia. In: Breiter K (ed) Excursion guide: genetic significance of phosphorus in fractionated granites, International geological correlation program, IGCP 373. Peršlák, pp 93–105

    Google Scholar 

  • Novák M, Selway JB, Černý P, Hawthorne FC, Ottolini L (1999) Tourmaline of the elbaite–dravite series from an elbaite-subtype pegmatite at Bližná, southern Bohemia, Czech Republic. Eur J Mineral 11:557–568

    Article  Google Scholar 

  • Nriagu JO, Moore PB (1984) Phosphate minerals. Springer, Berlin/Heidelberg/New York 442 pp

    Book  Google Scholar 

  • Pfaffl F (1966) Die Blötz bei Bodenmais/Bayrischer Wald. Aufschluss 17:207–208

    Google Scholar 

  • Pieczka A (2007) Beusite and an unusual Mn-rich apatite from the Szklary granitic pegmatite, Lower Silesia, southwestern Poland. Can Mineral 45:901–914

    Article  Google Scholar 

  • Plaumann S (1976) Schweremessungen im Bereich Erbendorf. Niedersächsisches Landesamt für Bodenforschung, File No 75564, Hannover

    Google Scholar 

  • Plaumann S (1986) Die Schwerekarte der Oberpfalz und ihre Bezüge zu Strukturen der oberen Erdkruste. Geol Jahrb E 33:5–13

    Google Scholar 

  • Plaumann S (1995) Die Schwerekarte 1:500000 der Bundesrepublik Deutschland (Bouguer-Anomalien) Blatt Süd. Geol Jahrb E 53:3–13

    Google Scholar 

  • Pucher R (1986) Interpretation der magnetischen Anomalie von Erbendorf (Oberpfalz) und dazugehörige gesteinsmagnetische Untersuchungen. Geol Jahrb E 33:31–52

    Google Scholar 

  • Pucher R, Wonik T (1990) Eine Karte der Magnetfeldanomalien für die Umgebung der KTB-Bohrlokation in der Oberpfalz. Geol Jahrb E 44:3–13

    Google Scholar 

  • Pucher R, Bader K, Stettner G, Wonik T (1990) Eine Karte der Magnetfeldanomalien für die Umgebung der KTB-Bohrlokation in der Oberpfalz. Geol Jahrb E 44:1–48

    Google Scholar 

  • Richter P, Stettner G (1979) Geochemische und petrographische Untersuchungen der Fichtelgebirgsgranite. Geologica Bavarica 78:1–144

    Google Scholar 

  • Richter P, Stettner G (1986) Untersuchungen zur Form und räumlichen Lage der Granitplutone im Projektgebiet der Lokation Oberpfalz. German Science Foundation- Continental Deep Drilling Program of the Federal Republic of Germany, Final report

    Google Scholar 

  • Rock NMS (1991) Lamprophyres (with contributions by D. R. Bowes & A. E. Wright). Glasgow & London: Blackie, New York: Van Nostrand, Reinhold. Rock

    Google Scholar 

  • Rohrmüller J (1998) Geologische Karte von Bayern 1:25000 Erläuterungen zum Blatt Nr. 6240 Flossenbürg. Geological Survey of Bavaria, München, 95 pp

    Google Scholar 

  • Rolland Y, Cox S, Boullie AM, Pennacchioni G, Mancktelow N (2003) Rare earth and trace element mobility in mid-crustal shear zones: insights from the Mont Blanc Massif (Western Alps). Earth Planet Sci Lett 214:203–219

    Article  Google Scholar 

  • Romer RL, Smeds S-A (1994) Implications of U-Pb age of columbite-tantalites from granitic pegmatites for the Paleoproterozoic accretion of 1.90-1.85 Ga magmatic arcs to the Baltic Shield. Precambrian Res 67:141–158

    Article  Google Scholar 

  • Romer RL, Smeds S-A (1996) U-Pb columbite ages of pegmatites from Sveconorvegian terranes in southwestern Sweden. Precambrian Res 76:15–30

    Article  Google Scholar 

  • Romer RL, Smeds S-A (1997) U-Pb columbite chronology of post-kinematic Paleoproterozoic pegmatites in Sweden. Precambrian Res 82:85–99

    Article  Google Scholar 

  • Schaaf P, Sperling T, Müller-Sohnius D (2008) Pegmatites from the Bavarian Forest, SE Germany: geochronology, geochemistry and mineralogy. Geologica Bavarica 108:204–303

    Google Scholar 

  • Seifert T (2008) Metallogeny and petrogenesis of lamprophyres in the Mid-European Variscides – Postcollisional magmatism and its relationship to Late Variscan ore forming processes in the Erzgebirge (Bohemian Massif). IOS Press BV, Amsterdam

    Google Scholar 

  • Seltmann R, Förster HJ, Gottesmann B, Sala M, Wolf D, Štemprok M (1998) The Zinnwald greisen deposit related to post-collisional A-type silicic magmatism in the Variscan eastern Erzgebirge/Krušne Hory. In: Breiter K (ed) Excursion guide: genetic significance of phosphorus in fractionated granites, International geological correlation program, IGCP 373. Peršlák, pp 33–50

    Google Scholar 

  • Siebel W, Höhndorf A, Wendt I (1995a) Origin of late Variscan granitoids from NE Bavaria: Germany, exemplified by REE and Nd isotope systematics. Chem Geol 125:249–270

    Article  Google Scholar 

  • Siebel W, Breiter K, Höhndorf A, Wendt I, Henjes-Kunst F (1995b) Preliminary note on age relationships and Nd isotope composition of granitoids from the Bärnau-Rozvadov pluton, Western Bohemia. In: 8th conference of the German Continental Deep Drilling Programme (KTB) Giessen, 25–26 May 1995

    Google Scholar 

  • Siebel W, Trzebski R, Stettner G, Hecht L, Casten U, Höhndorf A, Müller P (1997) Granitoid magmatism of the NW Bohemian Massif related: gravity data composition, age relations and phase concept. Geol Rundsch 86:45–63

    Article  Google Scholar 

  • Stettner G (1990) KTB Umfeldgeologie. Bayerisches Geologisches Landesamt, München, 31 pp

    Google Scholar 

  • Strunz H (1952) Mineralien und Lagerstätten in Ostbayern. Acta Albertina Ratsibonensia 20:81–203

    Google Scholar 

  • Strunz H (1962) Die Uranfunde in Bayern von 1804 bis 1962 (einschliesslich der radiometrischen Messergebnisse). Naturwissesnchaftlicher Verein zu Regensburg, Regensburg, 92 pp

    Google Scholar 

  • Strunz H (1971) Mineralien und Lagerstätten des Bayerischen Waldes. Aufschluss 21:7–91

    Google Scholar 

  • Strunz H (1974) Granites and pegmatites of in eastern Bavaria. Fortschritte der Mineralogie 52 Beihefte 1: 1–32

    Google Scholar 

  • Strunz H, Forster A, Tennyson C (1975) Die Pegmatite der nördlichen Oberpfalz. Aufschluss 26:117–189

    Google Scholar 

  • Taylor SR, McLennan SM (1995) The geochemical evolution of the continental crust. Rev Geophys 33:241–265

    Article  Google Scholar 

  • Teng F-Z, McDonough WF, Rudnick RL, Dalpé C, Tomascak PB, Chappell BW, Gao S (2004) Lithium isotopic composition and concentration of the upper continental crust. Geochim Cosmochim Acta 68:4167–4178

    Article  Google Scholar 

  • Tennyson C (1981) Zur Mineralogie der Pegmatite des Bayerischen Waldes. Aufschluss 31:49–73

    Google Scholar 

  • Tollari N, Toplis MJ, Barnes S-J (2006) Predicting phosphate saturation in silicate magmas: an experimental study of the effects of melt composition and temperature. Geochim Cosmochim Acta 70:1518–1536

    Article  Google Scholar 

  • Vasyukova EA, Izokh AE, Borisenko AS, Pavlova GG, Sukhorukov VP, Anh TT (2011) Early Mesozoic lamprophyres in Gorny Altai: petrology and age boundaries. Russ Geol Geophys 52:1574–1591

    Article  Google Scholar 

  • Velichkien VI, Chernyhov IV, Simonova LI, Yudintsev SV (1994) Geotectonic position, petrochemical and geochronological features of the Younger Granite Complex in the Krušne Hory (Erzgebirge) of the Bohemian Massif. J Czech Geol Soc 39:11

    Google Scholar 

  • Vrána S, Blümel P, Petrakakis K (1995) Metamorphic evolution. In: Dallmeyer RD, Franke W, Weber K (eds) Pre-permian geology of central and eastern Europe. Springer, Heidelberg/Berlin/Tokyo, pp 453–466

    Chapter  Google Scholar 

  • Weber K, Vollbrecht A (1989) The crustal structure at the KTB Drill Site, Oberpfalz. In: Emmermann R, Wohlenberg J (eds) The continental deep drilling program (KTB). Springer, Heidelberg, pp 5–36

    Chapter  Google Scholar 

  • Wemmer K, Ahrendt H (1993) Age determination on retrograde processes in Rocks of the KTB and the surrounding area. KTB-Report 93-2, pp 129–131

    Google Scholar 

  • Wendt I, Kreuzer H, Müller P, Schmidt H (1986) Gesteins- und Mineraldatierungen des Falkenberger Granits. Geol Jahrb E 34:5–67

    Google Scholar 

  • Wendt I, Carl C, Kreuzer H, Müller P, Stettner G (1992) Ergänzende Messungen zum Friedenfelser Granite Steinwald und radiometrische Datierung des Ganggranite im Falkenberger Granit. Geol Jahrb A137:3–24

    Google Scholar 

  • Wendt I, Ackermann H, Carl C, Kreuzer H, Müller P, Stettner G (1994) Rb/Sr-Gesamtgesteins- und K/Ar-Glimmerdatierungen der Granite von Flossenbürg und Bärnau. Geol Jahrb E51:3–29

    Google Scholar 

  • Wooley AR, Bergman SC, Edgar AD, Le Bas MJ, Mitchell RH, Rock NS, Smith BHS (1996) Classification of lamprophyres, lamproites, kimberlites, and the kalsilitic, melilitic, and leucitic rocks. Can Mineral 34:175–186

    Google Scholar 

  • Ziehr H (1957) Uranvorkommen in Bayern. Die Atomwirtschaft 2:193–196

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dill, H.G. (2015). Pegmatites and Their Country Rocks in the Central European Variscides. In: The Hagendorf-Pleystein Province: the Center of Pegmatites in an Ensialic Orogen. Modern Approaches in Solid Earth Sciences, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-18806-5_3

Download citation

Publish with us

Policies and ethics