Pegmatitic Rocks and Their Geodynamic Setting in the Central European Variscides

  • Harald G. Dill
Part of the Modern Approaches in Solid Earth Sciences book series (MASE, volume 15)


Pegmatitic rocks are not randomly distributed across the Variscan/Hercynian basement in Central Europe. The evolution of pegmatites s.l. in the course of a complex orogeny of Meso-Europe took rather long, from the Devonian (419 Ma) through the Permian (252 Ma). In terms of structural geology and geodynamics, pegmatitic deposits primarily occur in ensialic Variscan-type orogens (calc-alkaline) with a thickened crust and a preponderance of thrusting and nappe stacking. In Rift-type settings (alkaline) a strong subcrustal impact is evident and as reactivated/reworked pseudopegmatites in Alpine-type orogens (calc-alkaline) these deposits developed during the initial stages when the crustal section was still rather thick. Both types pertain to the marginal ensimatic settings. They left their hallmarks to some extent also within the Central European Variscides and at its southern edge in the Alpine-Carpathian Orogen. The geodynamic units subjected to very-low-grade- to low-grade stage metamorphism at the margin of the Central European Variscides are barren with regard to pegmatites and aplites. Pegmatoids with minor B-(Li)-P-REE-U-Be mineralization occur along a suture zone extending across the present-day continents. It resulted from the late Variscan closure of the Rheic Ocean between Gondwana and Laurussia with remnants of an arc-related plutonism. Within allochthonous metamorphic complexes and nappes barren feldspar-quartz pegmatoids plus metapegmatites developed. Further south another part of this former coherent nappe also contains a small Be-Nb-P mineralization. Within the Subfluence zone, marked by continent-continent collision and thickening of the crust pegmatite, granite- pegmatite (miarolitic), pegmatite-aplite and pegmatoid abundant in B, Be, F, Li, Sn, U, P and As are encountered. Heading further to the core zone of the Variscan orogen, strong diapthoresis and shearing in the contact zone between the Saxothuringian and Moldanubian zones sensu lato favored the emplacement of pegmatite and aplite enriched in B, P, Be, Nb, As, Zr and F. High grade metamorphic rocks in an autochthonous position with a protolith mainly of Proterozoic age exist in the core zone. At the margin they are overthrusted onto adjacent geodynamic units and penetrated by multiple intrusions. The Hagendorf-Pleystein Pegmatite Province is located near the root zone for the nappe complexes thrusted onto the north-western geodynamic realms. Pegmatites and aplites with minor pegmatoids of the Hagendorf-Pleystein Pegmatite Province show the most varied concentration of rare elements in pegmatitic and aplitic rocks in this crustal section (B-P-REE-Nb/Ta-Li-Sc-Zn-Be). In some parts in core zone pegmatites can also be observed associated with skarns. Variscan lithologies were incorporated into the Alpine orogen and reactivated during the Alpine orogeny at the southern edge of the Meso-Europe. They contain granitic pegmatites, meta-pegmatites, pegmatoids and pseudo-pegmatites (B-Be-P-Nb-U-F-As-Li-Sn-REE-U). By quality this element assemblage is not very much different from that of the neighboring Variscan parent rocks. The suite of pegmatitic and aplitic mineral deposits is associated with mineral deposits of non-pegmatitic origin. They include thrustbound deposits (Au-As-Sb-(Hg)-Fe-Cu-Pb-Zn), plutonic/granite-related deposits (Sn-W-Mo-Pb-Ag-Zn-(In)-Cu-U), and unconformity-related (U-Pb-Zn-F-Ba). While the deposits can at least in parts structurally and compositionally related to the various types of pegmatites and aplites, stratabound deposits are mainly marker deposits for geodynamic units prone to aplitic or pegmatitic rocks in an ensialic orogen (SMS > > VM FeS-Cu-Zn, SEDEX Fe deposits, black-shale –hosted U-Cu-Mo-Sb-Zn-REE (low-grade-large-tonnage) and graphite). As an exception from this rule, the two last-mentioned mineralization with organic compounds can be considered (see geophysical surveys).


Bohemian Massif Gneiss Complex Rheic Ocean Moldanubian Zone Rhenohercynian Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abdakhmanov K, Zhautikov T, Kulishkin H, Poletaev A (1997) Field trip in Kazakhstan. In: Bekzanov GR, Dudich E, Gaál G, Jenchuraeva RJ (eds) Paleozoic granite-related Au, Cu, Mo, W, REE deposits and epithermal gold deposits, IUGS/UNESCO Deposit Modeling Program, workshop, Kazakhstan and Kyrgyzstan, Budapest, pp 65–80, 31 August–14 September 1997Google Scholar
  2. Achstetter M (2007) Aus Hornberg im Schwarzwald: Aquamarin in Edelsteinqualität und weitere Neufunde. Lapis 32:13–21Google Scholar
  3. Ackerman L, Zachariáš J, Pudilová M (2007) P–T and fluid evolution of barren and lithium pegmatites from Vlastějovice, Bohemian Massif, Czech Republic. Int J Earth Sci 96:623–638CrossRefGoogle Scholar
  4. Aichler J, Fojt B, Vaněček M (1995) Metallogenesis of the [Moravo Silesian zone]. In: Dallmeyer RD, Franke W, Weber K (eds) Tectono-stratigraphic evolution of the Central and East European orogens. Springer, Heidelberg, pp 512–517Google Scholar
  5. Aleksandrowski P, Mazur S (2002) Collage tectonics in the northeasternmost part of the Variscan Belt: the Sudetes, the Bohemian massif. In: Winchester JA, Pharaoh TC, Verniers J (eds) Palaeozoic amalgamation of Central Europe, Geological Society special publication, 201. Geological Society, London, pp 237–277Google Scholar
  6. Aleksandrowski P, Kryza R, Mazur S, Zaba J (1997) Kinematic data on major Variscan strike-slip faults and shear zones in the Polish Sudetes, northeast Bohemian Massif. Geol Mag 133:727–739CrossRefGoogle Scholar
  7. Altherr R, Holl A, Hegner E, Langer C, Kreuzer H (2000) High-potassium, calc alkaline I-type plutonism in the European Variscides: northern Vosges (France) and northern Schwarzwald (Germany). Lithos 50:51–73CrossRefGoogle Scholar
  8. Anthes G, Reischmann T (1996) Geochronologie und Isotopengeochemie der NE Mitteldeutschen Kristallinschwelle. Terra Nostra 96:9–10Google Scholar
  9. Awdankiewicz M, Kryza R, Szczepara N (2013) Timing of post-collisional volcanism in the eastern part of the Variscan Belt: constraints from SHRIMP zircon dating of Permian rhyolites in the North-Sudetic Basin (SW Poland). Geol Mag 151:611–628CrossRefGoogle Scholar
  10. Bartholomew MJ, Whitaker AE (2010) The Alleghanian deformational sequence at the foreland junction of the Central and Southern Appalachians. In: Tollo RP, Bartholomew MJ, Hibbard JP, Karabinos PM (eds) From Rodinia to Pangea: the lithotectonic record of the Appalachian Region, vol GSA Memoir, 206. Geological Society of America, Boulder, pp 431–454CrossRefGoogle Scholar
  11. Baumann L (1979) Some aspects of mineral deposit formation and the metallogeny of Central Europe. Verhandlungen der Bundesanstalt Wien 1978:205–220Google Scholar
  12. Baumann L, Kölbel B, Kraft S, Lächelt J, Rentzsch J, Schmidt K (1986) German democratic republic. In: Dunning FW, Evans AM (eds) Mineral deposits of Europe, vol. 3 Central Europe. IMM & Mineralogical Society, London, pp 303–329Google Scholar
  13. Baumann L, Kuschka E, Seifert TH (2000) Lagerstätten des Erzgebirges. Enke im Thieme Verlag, Stuttgart, pp 1–300Google Scholar
  14. Bederke E (1924) Das Devon in Schlesien und das Alter Sudetenfaltung. Fortschritte der Geologie und Paläontologie 7:1–55Google Scholar
  15. Behr HJ, Grosse S, Heinrichs T, Wolf U (1989) A reinterpretation of the gravity field in the surroundings of the KTB drill site-implications for the granite plutonism and terrane tectonic in the Variscan. In: Emmermann R, Wohlenberg J (eds) The German continental deep drilling program (KTB). Springer, Berlin, pp 501–525CrossRefGoogle Scholar
  16. Bernard JH (1980) Paragenetic units of the European Variscan megazone. Freiberger Forschungshefte C 354:55–117Google Scholar
  17. Besang C, Harre W, Kreuzer H, Lenz H, Müller P, Wendt I (1976) Radiometrische Datierung, geochemische und petrographische Untersuchungen der Fichtelgebirgsgranite. Geol Jahrb E 8:3–71Google Scholar
  18. Blümel P (1986) Metamoprhic processes in the Variscan crust of the central segment. In: Freeman R, Mueller S, Giese P (eds) Proceedings of the 3rd EGT workshop. European Science Foundation, Bad Honef, pp 149–155Google Scholar
  19. Boiron MC, Barakat A, Cathelineau M, Banks DA, Durisova J, Moravek P (2001) Geometry and P-V-T-X conditions of microfissural ore fluid migration: the Mokrsko gold deposit (Bohemia). Chem Geol 173:207–225CrossRefGoogle Scholar
  20. Bottke H (1963) Zur Kenntnis der dichten Roteisenerz aus Eisenerzlagerstätten des Lahn-Dill-Typs und deren Bildungsbedingungen. Erzmetall 16:437–443Google Scholar
  21. Breiter K (1998c) P-rich muscovite granites-latest product of two-mica granites fractionation in the South Bohemian Pluton. In: Breiter K (ed) Excursion guide: genetic significance of phosphorus in fractionated granites, International geological correlation program, IGCP 373. Czech Geological Survey, Peršlák, pp 107–126Google Scholar
  22. Breiter K, Fryda J, Seltmann R, Thomas R (1997) Mineralogical evidence for two magmatic stages in the evolution of an extremely fractionated P-rich rare-metal granite: the Podlesı stock, Krušne Hory, Czech Republic. J Petrol 38:1723–1739CrossRefGoogle Scholar
  23. Bröcker M, Żelaźniewicz A, Enders M (1998) Rb–Sr and U–Pb geochronology of migmatitic gneisses from the Góry Sowie (West Sudetes, Poland): the importance of Mid–Late Devonian metamorphism. J Geol Soc Lond 155:1025–1036CrossRefGoogle Scholar
  24. Buder W, Schuppan W, Seltmann R, Wolf M (1993) The Poehla Haemmerlein deposit. In: Seltmann R, Breiter K (eds) Hercynian tin granites and associated mineralisation from the Saxonian and Bohemian parts of the Erzgebirge: excursion guide, IAGOD working group on Tin and Tungsten. GeoForschungsZentrum, Potsdam, pp 67–71Google Scholar
  25. Carl C, Wendt I (1993) Radiometrische Datierungen der Fichtelgbirgsgranite. Zeitschrift Geologische Wissenschaften 21:49–72Google Scholar
  26. Čech F, Rieder M, Novák F, Novotný J (1978) Accessory nigerite in a granite from central Bohemia, Czechoslovakia. Neues Jb Mineral Monat 8:337–346Google Scholar
  27. Cempírek J, Novák M (2006) Hydroxylherderit a sdružené berylofosfáty z pegmatitu Rožná-Borovina. Acta Musei Moraviae, Scientiae Geologicae 91:79–88 (in Czech, with English summary)Google Scholar
  28. Černý P, Novák M, Chapman R (1992) Effects of sillimanite-grade metamorphism and shearing on Nb-Ta oxide minerals in granitic pegmatites: Maršíkov. Northern Moravia, Czechoslovakia. Can Mineral 30:699–718Google Scholar
  29. Černý P, Staněk J, Novák M, Baadsgaard H, Rieder M, Ottolini L, Kavalová M, Chapman R (1995) Chemical and structural evolution of micas at the Rožná and Dobrá Voda pegmatites, Czech Republic. Mineral Petrol 55:177–202CrossRefGoogle Scholar
  30. Chakhmouradian AR, Mitchell RH (1997) Compositional variation of perovskite-group minerals from the carbonatite complexes of the Kola alkaline province, Russia. Can Mineral 35:1293–1310Google Scholar
  31. Chovan M, Rojkovič I, Andráš P, Hanas P (1992) Ore mineralization of the Malé Karpaty Mts. (Western Carpathians). Geol Carpath 43:275–286Google Scholar
  32. Chrt J (1959) Current result of geological research at the skarn-type deposits in the Krušne Hory Mts. and the Krkonoše Mts. Geological Průk 180–185. (in Czech)Google Scholar
  33. Ciesielczuk J, Domańska-Siuda J, Szuszkiewicz A, Turniak K (2008) Strzegom-Sobótka massif (Sudetes, SW Poland) – an example of a complex late-Variscan granitic intrusion and its pegmatitic mineralization. Mineralogia – Special Papers 32: 181–187Google Scholar
  34. Collins AS, Kryza R, Żelaźniewicz J (2000) Macrofabric fingerprints of late Devonian-early Carboniferous subduction in the Polish Variscides, the Kaczawa complex, Sudetes. J Geol Soc Lond 157:283–288CrossRefGoogle Scholar
  35. Dallmeyer RD, Urban M (1998) Variscan vs. Cadomian tectonothermal activity in northwestern sectors of the Teplá-Barrandian zone, Czech Republic: constraints from 40Ar/39Ar ages. Geol Rundsch 87:94–106CrossRefGoogle Scholar
  36. Dallmeyer RD, Franke W, Weber K (1995a) Pre-permian geology of Central and Eastern Europe. Springer, Berlin/Heidelberg, 604 ppCrossRefGoogle Scholar
  37. Dallmeyer RD, Fallick AE, Koller F, Slapansky P (1995b) The Nebelstein complex: a Variscan mineralized granite intrusion in the Bohemian Massif (Austria). Beiheft I. Eur J Mineral 7:52Google Scholar
  38. DEKORP Research Group (1990) Results of deep-seismic reflection investigations in the Rhenish Massif. Tectonophysics 173:507–515CrossRefGoogle Scholar
  39. Dill HG (1989) Metallogenetic and geodynamic evolution in the central European Variscides: a pre-well site study for the German Continental Deep Drilling Programme. Ore Geol Rev 4:279–304CrossRefGoogle Scholar
  40. Dill HG (1990) Chemical basin analysis of the metalliferous “Variegated Metamorphics” of the Bodenmais ore district (F.R. of Germany). Ore Geol Rev 5:151–173CrossRefGoogle Scholar
  41. Dill HG, Sachsenhofer RF, Grecula P, Sasvári T, Palinkaš LA, Borojević-Šoštarić S, Strmić-Palinkaš S, Prochaska W, Garuti G, Zaccarini F, Arbouille D, Schulz H-M (2008a) Fossil fuels, ore – and industrial minerals. In: McCann T (ed) Geology of Central Europe, Special publication. Geological Society of London, London, pp 1341–1449Google Scholar
  42. Dill HG, Sachsenhofer RF, Grecula P, Sasvári T, Palinkaš LA, Borojević-Šoštarić S, Strmić-Palinkaš S, Prochaska W, Garuti G, Zaccarini F, Arbouille D, Schulz H-M, Locmelis B (2008b) The origin of mineral and energy resources of Central Europe (map 1: 2500000). Geological Society of London, London (on CD ROM)Google Scholar
  43. Dombrowski A, Okrusch M, Henjes-Kunst F (1994) Geothermobarometry and geochronology on mineral assemblages of orthogneisses and related metapelites of the Spessart Crystalline Complex, NW Bavaria, Germany. Chem Erde 54:85–101Google Scholar
  44. Dörr W, Zulauf G, Fiala J, Franke W, Vejnar Z (2002) Neoproterozoic to Early Cambrian history of an active plate margin in the Teplá-Barrandian unit – a correlation of U-Pb isotopic dilution TIMS ages (Bohemia, Czech Republic). Tectonophysics 352:65–85CrossRefGoogle Scholar
  45. Dosbaba M, Novák M (2012) Quartz replacement by “kerolite” in graphic quartz–feldspar intergrowths from the Věžná I pegmatite, Czech Republic: a complex desilication process related to episyenitization. Can Mineral 50:1609–1622CrossRefGoogle Scholar
  46. Drost K, Linnemann U, McNaughton N, Fatka O, Kraft P, Gehmlich M, Tonk C, Marek J (2004) New data on the Neoproterozoic – Cambrian geotectonic setting of the Teplá-Barrandian volcano-sedimentary successions: geochemistry, U-Pb zircon ages, and provenance (Bohemian Massif, Czech Republic). Int J Earth Sci 93:742–757CrossRefGoogle Scholar
  47. Drozdzewski G (1993) The Ruhr coal basin (Germany): structural evolution of an autochthonous foreland basin. Int J Coal Geol 23:231–250CrossRefGoogle Scholar
  48. Ebner F, Cerny I, Eichhorn R, Götzinger MA, Paar WH, Prochaska W, Weber L (2000) Mineral resources in the Eastern Alps and adjoining areas. In: Neubauer F, Höck V (eds) Aspects of geology in Austria, vol 92, Mitteilungen der Österreichischen Geologischen Gesellschaft. Österreichische Geologische Gesellschaft, Vienna, pp 157–184Google Scholar
  49. Eichhorn R, Höll R, Loth G, Kennedy A (1999) Implication of U-Pb SHRIMP zircon data on the age and evolution of the Felberthal tungsten deposit (Tauern Window, Austria). Int J Earth Sci 88:496–512CrossRefGoogle Scholar
  50. Emmermann R, Lauterjung J (1997) German continental deep drilling program KTB: overview and major results. J Geophys Res 102:18179–18201CrossRefGoogle Scholar
  51. Falk F, Franke W, Kurze M (1995) Stratigraphy. In: Dallmeyer RD, Franke W, Weber K (eds) Tectono-stratigraphic evolution of the Central and East European orogens. Springer, Heidelberg, pp 221–234Google Scholar
  52. Fettel M (1971) Mineralienfunde bei Hornberg im Schwarzwald. Aufschluss 22:216–217Google Scholar
  53. Finger F, Roberts MP, Haunschmid B, Schermaier A, Steyrer HP (1997) Variscan granitoids of central Europe: their typology, potential sources and tectonothermal relations. Mineral Petrol 61:67–96CrossRefGoogle Scholar
  54. Förster HJ, Tischendorf G, Trumbull RB, Gottesmann B (1999) Late-collisional granites in the Variscan Erzgebirge, Germany. J Petrol 40:1613–1645CrossRefGoogle Scholar
  55. Frank W, Kralik M, Schabert S, Thöni M (1987) Geochronological data from the Eastern Alps. In: Flügel HW, Faupl P (eds) Geodynamics of the eastern Alps. F. Deuticke, Vienna, pp 272–281Google Scholar
  56. Franke W (2000) The mid-European segment of the Variscides: Tectonostratigraphic units, terrane boundaries and plate tectonic evolution. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes, quantification and modeling in the Variscan belt, Geological Society special publication, 179. Geological Society Publication, London, pp 35–62Google Scholar
  57. Franke W, Stein E (2000) Exhumation of high –pressure rocks in the Saxo-Thuringian belt: geological constraints and alternative models. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modeling in the Variscan Belt, Geological Society special publications, 179. Geological Society Publications, London, pp 337–354Google Scholar
  58. Franke W, Kreuzer H, Okrusch M, Schüssler U, Seidel E (1995) Saxothuringian Basin: exotic metamorphic nappes, stratigraphy, structure and igneous activity. In: Dallmeyer D, Franke W, Weber K (eds) Pre-permian geology of Central and Western Europe. Springer, Berlin, pp 277–294CrossRefGoogle Scholar
  59. Frisch W, Neubauer F (1989) Pre-Alpine terranes and tectonic zoning in the eastern Alps. In: Dallmeyer RD (ed) Terranes in the circum-Atlantic Paleozoic orogens, Geological Society of America, special publications, 230. Geological Society of America, Boulder, pp 91–100CrossRefGoogle Scholar
  60. Frizzo P, Mills J, Visoná D (1982) Ore petrology and metamorphic history of Zn-Pb ores, Monteneve, Tyrol, N. Italy. Mineral Deposita 17:333–347CrossRefGoogle Scholar
  61. Froitzheim N, Plašienka D, Schuster R (2008) Alpine tectonics of the Alps and Western Carpathians. In: McCann T (ed) Geology of Central Europe, Geological Society special publication. Geological Society, London, pp 1141–1232Google Scholar
  62. Fuchs G, Matura A (1976) Zur Geologie des Kristallins der südlichen Böhmischen Masse. Jahrb Geol Bundesanst 119:1–43Google Scholar
  63. Gaschnitz R (2001) Gasgenese und Gasspeicherung im flözführenden Oberkarbon des Ruhr-Beckens, Berichte des Forschungszentrums Jülich, 3859. Forschungszentrums, Jülich, pp 1–342Google Scholar
  64. Gebauer D, Grünenfelder M (1979) U-Pb zircon and Rb-Sr mineral dating of eclogites and their country rocks; example: Münchberger Gneiss Massif, northeast Bavaria. Earth Planet Sci Lett 42:35–44CrossRefGoogle Scholar
  65. Göd R (1978) Vorläufige Mitteilung über einen Spodumen-Holmquistit führenden Pegmatit aus Kärnten. Anzeiger der Akademie der Wissenschaften, mathematisch-naturwissenschaftliche Klasse 115:161–165Google Scholar
  66. Göd R (1989) The spodumene deposit at “Weinebene” Koralpe, Austria. Mineral Deposita 24:270–278CrossRefGoogle Scholar
  67. Grecula P (1982) Gemericum – segment of the Paleotethyan riftogenous basin, Mineralia slovaca monograph. AFLA, Bratislava. 263 pp. (in Slovak with English abstract)Google Scholar
  68. Grecula P, Roth Z (1978) Kinematický model Západnich Karpat v souborěm řezu. Zb Geol Věd 32:49–73Google Scholar
  69. Grecula P, Abonyi A, Abonyiová M, Antaš J, Bartalský B, Bartalský J, Dianiška I, Drnzík E, Ďuďa R, Gargulák M, Gazdačko Ľ, Hudáček J, Kobulský J, Lörincz L, Macko J, Návesňák D, Németh Z, Novotný L, Radvanec M, Rojkovič L, Rozložník O, Varček C, Zlocha J (1995) Mineral deposit of the Slovak Ore Mountains. Mineralia Slovaca Monogr 1:1–834Google Scholar
  70. Habler G, Thöni M (2001) Preservation of Permo–Triassic low-pressure assemblages in the Cretaceous high-pressure metamorphic Saualpe crystalline basement (Eastern Alps, Austria). J Metamorph Geol 19:679–697CrossRefGoogle Scholar
  71. Hansen BT, Teufel S, Ahrendt H (1989) Geochronology of the Moldanubian-Saxothuringian Transition Zone, Northeast Bavaria. In: Emmermann R, Wohlenberg J (eds) The German continental deep drilling program (KTB). Springer, Berlin, pp 55–66CrossRefGoogle Scholar
  72. Henk A, von Blanckenburg F, Finger F, Schaltegger U, Zulauf G (2000) Syn-convergent high-temperature metamorphism and magmatism in the Variscides: a discussion of potential heat sources. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modeling in the Variscan Belt, Geological Society special publications, 179. Geological Society Publications, London, pp 387–399Google Scholar
  73. Hladíková J, Aichler J, Mixa P (1992) Source of sulfur of base metal sulfide deposits at the NE margin of the Bohemian Massif (Czechoslovakia), Abstract 29th IGC Kyoto, 3:757Google Scholar
  74. Hohl J-L (1994) Minéraux et Mines du Massif Vosgien. Editions du Rhin, Mulhouse, 271 ppGoogle Scholar
  75. Höll R (1975) Die Scheelitlagerstätte Felbertal und der Vergleich mit anderen Scheelitlagerstätten in den Ostalpen, Abhandlungen Bayerischen Akademie der Wissenschaften N.F., 157A. Verl. d. Bayer. Akad. d. Wiss, München, pp 1–114Google Scholar
  76. Höller H (1959) Ein Spodumen-Beryll-Pegmatit und ein mineralreicher Marmor im Wildbachgraben bei Deutschlandsberg. Mitteilungsblatt Abteilung Mineralogie Landesmuseum Joanneum 1:19Google Scholar
  77. Holub FV (1997) Ultrapotassic plutonic rocks of the durbachite series in the Bohemian Massif: petrology, geochemistry and petrogenetic interpretation. Sbor Geol Véd LoŽisková Geol Mineral 31:5–25Google Scholar
  78. Holub FV, Klečka M, Matějka D (1995) Igneous activity. In: Dallmeyer RD, Franke W, Weber K (eds) Tectono-stratigraphic evolution of the Central and East European orogens. Springer, Heidelberg, pp 444–452Google Scholar
  79. Holub FV, Cocherie A, Rossi P (1997) Radiometric dating of granitic rocks from the Central Bohemian Plutonic Complex (Czech Republic): constraints on the chronology of the thermal and tectonic events along the Moldanubian-Barrandian boundary. CR Acad Sci Ser IIA 325:19–26Google Scholar
  80. Hovorka D, Meres Š, Ivan P (1992) Pre-Alpine Western Carpathians Mts basement complexes: geochemistry, petrology, geodynamic setting. Terra Abstract 4:32Google Scholar
  81. Jakes P, Waldhauserova J (1987) Orogenic sequences in the upper Proterozoic of the Bohemian Massif. Proterozoic geochemistry (IGCP 217) Lund, 1987:14Google Scholar
  82. Janeczek J, Sachanbiński M (1989) Beryl pegmatites in two-micas granite at the Eastern part of Strzegom-Sobótka Massif. Arch Mineral 54:57–79 (in Polish)Google Scholar
  83. Janoušek V, Rogers G, Bowes DR (1995) Sr-Nd isotopic constraints on the petrogenesis of the Central Bohemian Pluton, Czech Republic. Geol Rundsch 84:520–534CrossRefGoogle Scholar
  84. Jęczmyk M, Juskowiakowa M (1989) Geology and geochemical characteristics of the crystalline rocks of the Bogatynia area (Western Sudetes Mts.). Bull Inst Geol 360:5–38 (in Polish)Google Scholar
  85. Jiang S-Y, Palmer MR, Slack JF, Shaw DR (1998) Paragenesis and chemistry of multistage tourmaline formation in the Sullivan Pb–Zn–Ag deposit, British Columbia. Econ Geol 93:47–67CrossRefGoogle Scholar
  86. Jura D, Jurecka J, Krieger W, Kuzak R, Lesnik D, Perski Z (2000) Conditions of hard coal exploitation and its environmental impact in the western part of the Upper Silesian Coal Basin. In: Guide to field trips, 4th European Coal conference, Ustron, Polish Geological Institute, Warsaw, pp 5–39Google Scholar
  87. Kalenda F, Vaněček M (1989) Base metal deposits of the Zlaté Hory District. Excursion Guide 5A Gold Districts of the Bohemian Massif, Gold 89 in Europe, pp 39–43Google Scholar
  88. Kalt A (1995) Petrologie cordieritführender Metapelite das Bayerischen Waldes und des Schwarzwaldes. Terra Nostra 95:108Google Scholar
  89. Kalt A, Altherr R, Hanel M (2000) The Variscan basement of the Schwarzwald. Beiheft zum Europäischen J Mineral 12:1–43Google Scholar
  90. Kastl E, Tonika J (1984) The Marianske Lazne metaophiolite complex (West Bohemia). Krystalinikum 17:59–76Google Scholar
  91. Kleinschmidt G, Neugebauer J, Schönenberg R (1975) Gesteinsinhalt und Stratigraphie der Phyllitgruppe in der Saualpe. Clausthaler Geol Abh, Special Volume 1:11–44Google Scholar
  92. Kodym O (1966) Moldanubicum. In: Svoboda J (ed) Regional geology of Czechoslovakia I. Geological Survey of Czechoslovakia, Prague, pp 40–98Google Scholar
  93. Kohút M (2013) How many events occurred during the Variscan orogeny in the Western Carpathians. Crustal evolution and geodynamic processes in Central Europe. In: Proceedings of the Joint Conference of the Czech and German geological societies held in Plzeň (Pilsen), volume 82, 63, 16–19 September 2013Google Scholar
  94. Koller F (1996) Plutonische Gestein. In: Steininger FF (ed) Erdgeschichte des Waldviertels, Das Waldviertel 45. Wien, pp 25–36Google Scholar
  95. Konopásek J, Schulmann K (2005) Contrasting early carboniferous field geotherms: evidence for accretion of a thickened orogenic root and subducted Saxothuringian crust (Central European Variscides). J Geol Soc Lond 162:463–470CrossRefGoogle Scholar
  96. Kossmat F (1927) Gliederung des varistischen Gebirgsbaus. Abhandlungen Sächsische Geologische Landes-Anstalt 1:1–39Google Scholar
  97. Kovách Á, Svingor É, Grecula P (1986) Rb/Sr isotopic ages of granitoid rocks from the Spiš-Gemer metalliferous Mts., West Carpathians, Eastern Slovakia. Mineralia Slovaca 18:1–14Google Scholar
  98. Kozłowski A, Sachanbiński M (2007) Karkonosze intragranitic pegmatites and their minerals. In: Kozłowski A, Wiszniewska J (eds) Granitoids in Poland, Archiwum Mineralogiczne monograph, 1. Faculty of Geology of The Warsaw University, Warszawa, pp 155–178Google Scholar
  99. Kreuzer H, Seidel E, Schüssler U, Okrusch M, Lenz K-L, Raschka H (1989) K-Ar geochronology of different tectonic units at the northwestern margin of the Bohemian Massif. In: Meisner R, Gebauer D (eds) The evolution of European continental crust: deep drilling, geophysics, geology and geochemistry, vol 157, Tectonophysics. Elsevier, New York, pp 149–178Google Scholar
  100. Kreuzer H, Henjes-Kunst F, Seidel E, Schüssler U, Bühn B (1993) Ar-Ar spectra on minerals from KTB and related medium pressure units. KTB-Report 93–2, Hannover, pp 133–136Google Scholar
  101. Kroner U, Hahn T (2004) Sedimentation, deformation und Metamorphose im Saxothuringikum während der variszischen Orogenese: Die komplexe Entwicklung von Nord. Gondwana während kontinentaler Subduktion und schiefer Kollision. In: Linnemann U (ed) Das Saxothurigikum, Geologica Saxonia 48/49. Staatliche Naturhistorische Sammlungen, Dresden, pp 133–146Google Scholar
  102. Kryza R, Mazur S, Oberc-Dziedzic T (2004) The Sudetic geological mosaic: insights into the root of the Variscan orogen. Prz Geol 52:761–773Google Scholar
  103. Kryza R, Crowley QG, Larionov A, Pin C, Oberc-Dziedzic T, Mochnacka K (2012) Chemical abrasion applied to SHRIMP zircon geochronology: an example from the Variscan Karkonosze Granite (Sudetes, SW Poland). Gondwana Res 21:757–767CrossRefGoogle Scholar
  104. Kucha H (1980) Continuity in the monazite-huttonite series. Mineral Mag 43:1031–1034CrossRefGoogle Scholar
  105. Lammerer B, Weger M (1998) Footwall uplift in an orogenic wedge of the Tauern Window in the Eastern Alps of Europe. Tectonophysics 285:213–230CrossRefGoogle Scholar
  106. Langenaeler V (2000) The Campine Basin: stratigraphy, structural geology, coalification and hydrocarbon potential of the Devonian to Jurassic. Aardkundige Mededelingen 10:1–142Google Scholar
  107. Lenz H (1986) Rb/Sr-Gesamtgesteins-Altersbestimmung am Weissenstadt-Markleuthener Porphyrgranit des Fichtelgebirges. Geol Jahrb E 34:67–76Google Scholar
  108. Linnemann U (2003) Die Struktureinheiten des Saxothurigikums. In: Linnemann U (ed) Das Saxothuringikum, Gelogica Saxonica 48/49. Staatliche Naturhistorische Sammlungen, Dresden, pp 19–28Google Scholar
  109. Linnemann U, Nance RD, Kraft P, Zulauf G (2007) The evolution of the Rheic Ocean: from Avalonian-Cadomian Active Margin to Alleghanian-Variscan collision. The Geological Society of America Special Paper, 423, Boulder, pp 1–630Google Scholar
  110. Lippolt HJ (1986) Nachweis altpaläozoischer Primäralter (Rb-Sr) und karbonischer Abkühlungsalter (K-Ar) der Muskowit-Biotit-Gneise des Spessart und der Biotit-Gneise des Böllsteiner Odenwald. Geol Rundsch 75:569–583CrossRefGoogle Scholar
  111. Lis J, Sylwestrzak H (1979) Episyenites and perspectives of occurrences of intragranite uranium deposits in the Karkonosze Massif. Przegl Geol 27:223–229 (in Polish)Google Scholar
  112. London D (2008) Pegmatites, Canadian mineralogist, special publication, 10. Mineralogical Association of Canada, Ottawa, pp 1–347Google Scholar
  113. Ludhová L, Janák M (1999) Phase relations and P-T path of cordierite-bearing migmatites, Western Tatra Mts, Western Carpathians. Geol Carpath 50:283–293Google Scholar
  114. Malitch KN, Thalhammer OAR, Knauf VV, Melcher F (2003) Diversity of platinum-group mineral assemblages in banded and podiform chromatite from the Kraubath ultramafic massif, Austria: evidence for an ophiolitic transition zone? Mineral Deposita 38:282–297Google Scholar
  115. Malkovský M (1979) Tektogenese der Plattformbedeckung des Böhmischen Massivs. Knihovna Ústř Úst Geol Praha 53:1–176Google Scholar
  116. Markl G (1995) Bertrandit vom Leuchtenberg ein weiteres Berylliumsilikat aus dem Gebiet von Hornberg. Erzgräber 9:96–98Google Scholar
  117. Markl G, Schumacher JC (1996) Cassiterite-bearing greisens and late-magmatic mineralization in the Variscan Triberg Granite Complex, Schwarzwald Germany. Econ Geol 91:576–589CrossRefGoogle Scholar
  118. Máška M, Zoubek V (1960) The principal division of the West Carpathians and their pre-Neodic basement. In: Buday T, Koym O, Mahel M et al (eds) Tectonic development of Czechoslovakia. Nakladatelstvi Československé Akademie Věd, Praha, pp 139–151Google Scholar
  119. Matte P (2001) The Variscan collage and orogeny (480±290 Ma) and the tectonic definition of the Armorica microplate: a review. Terra Nova 13:122–128CrossRefGoogle Scholar
  120. Matte P, Maluski H, Rajlich R, Franke W (1990) Terrane boundaries in the Bohemian Massif: results of large-scale Variscan thrusting. Tectonophysics 177:151–170CrossRefGoogle Scholar
  121. Mazur S, Aleksandrowski P, Szczepański J (2005) The presumed Teplá-Barrandian/Moldanubian terrane boundary in the Orlica Mountains (Sudetes, Bohemian Massif): structural and petrological characteristics. Lithos 82:85–112CrossRefGoogle Scholar
  122. Mazur S, Aleksandrowski P, Kryza R, Oberc-Dziedzic T (2006) The Variscan orogen in Poland. Geol Q 50:89–118Google Scholar
  123. McCann T (2008a) The geology of Central Europe: precambrian and palaeozoic: 1. The Geological Society of London, London, Special volume, 748 ppGoogle Scholar
  124. McCann T (2008b) The geology of Central Europe: mesozoic and cenozoic: 2. The Geological Society of London, London, Special volume, 700 ppGoogle Scholar
  125. McKerrow WS, Ziegler AM (1972) Palaeozoic oceans. Nature Phys Sci 240:92–94CrossRefGoogle Scholar
  126. McKerrow WS, MacNiocaill C, Ahlberg PE, Clayton G, Cleal CJ, Eagar RMC (2000) The late Paleozoic relations between Gondwana and Laurussia. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes, quantification and modeling in the Variscan belt, Geological Society special publication, 179. Geological Society Publishing House, London, pp 9–20Google Scholar
  127. Misař Z, Dudek A, Havlena V, Weiss J (1983) Geologie ČSSR I, Český masív. Státni pedagogické nakladatestvi, Praha, 333 ppGoogle Scholar
  128. Mochnacka K, Banaś M, Kramer W, Pošmourný K (1995) Metallogenesis of the Lugicum. In: Dallmeyer RD, Franke W, Weber K (eds) Tectono-stratigraphic evolution of the Central and East European orogens. Springer, Heidelberg, pp 357–372Google Scholar
  129. Morávek P, Pouba Z (1990) L ór dans la métallogénie du massif de Bohème. Mineral Deposita (Suppl) 25:90–98Google Scholar
  130. Mrázek P (1986) Metallogeny of the West Bohemian Upper Proterozoic. In: Proceedings of conference on metallogeny of the precambrian, IGCP, Proj. 91:49–53Google Scholar
  131. Mrázek P, Pouba Z (1995) Metallogenesis. In: Dallmeyer RD, Franke W, Weber K (eds) Tectono-stratigraphic evolution of the Central and East European orogens. Springer, Heidelberg, pp 411–414Google Scholar
  132. Němec D (1973) Das Vorkommen der Zn-Spinelle in der Böhmischen Masse. Tschermaks Mineralogische und Petrographische Mitteilungen 19:95–109CrossRefGoogle Scholar
  133. Němec D (1978) Zink im Staurolith. Chem Erde 37:307–314Google Scholar
  134. Němec D (1998) The Rožná pegmatite field, western Moravia (Czech Republic). Chem Erde 58:233–246Google Scholar
  135. Neuroth H (1997) K-Ar-Datierungen an detritischen Muskowiten-“Sicherungskopien” orogener Prozesse am Beispiel der Varisziden. Göttinger Arbeiten Geologie und Paläontologie 72:1–143Google Scholar
  136. Nickel E, Fettel M (1985) Odenwald, vol 65, 2nd edn, Sammlung geologischer Führer. Bornträger, Berlin/Stuttgart, 231 ppGoogle Scholar
  137. Niedermayr G (1990) Die Mineralien der Kor- und Saualpe in Kärnten, Österreich. Mineralien-Welt 1:58–67Google Scholar
  138. Novák M (1992) Locality no 1: Rožná near Bystřice nad Pernštejnem, a large pegmatite dike of the lepidolite subtype, type locality of the lepidolite. In: Novák M, Černý P (eds) Field trip guidebook, Lepidolite 200, pp 21–26Google Scholar
  139. Novák M (2005) Granitické pegmatity Českého masivu (Česká Republika); mineralogická, geochemická a regionální klasifikace a geologický význam. Acta Musei Moraviae, Scientiae geologicae 90:3–74 (in Czech, with an abstract in English)Google Scholar
  140. Novák M, Černý P (2001) Distinctive compositional trends in columbite-tantalite from two segments of the lepidolite pegmatite at Rožná, western Moravia, Czech Republic. J Czech Geol Soc 46:1–8Google Scholar
  141. Novák M, Filip J (2010) Unusual (Na, Mg)-enriched beryl and its breakdown products (beryl II, bazzite, bavenite) from euxenite-type NYF pegmatite related to the orogenic ultrapotassic Třebíč pluton, Czech Republic. Can Mineral 48:615–628CrossRefGoogle Scholar
  142. Novák M, Gadas P (2010) Internal structure and mineralogy of a zoned anorthite- and grossular-bearing leucotonalitic pegmatite in serpentinized lherzolite at Ruda Nad Moravou, Staré Mešto unit, Czech Republic. Can Mineral 48:629–650CrossRefGoogle Scholar
  143. Novák M, Hyršl J (1992) Locality no.3: Vlastějovice near Zruč nad Sázavou, pegmatites with fluorite penetrating skarn. In: Novák M, Černý P (eds) International symposium on mineralogy, petrology and geochemistry of granitic pegmatites Lepidolite 200, Nové Město na Moravě, Czech Republic. Field trip guidebook, pp 33–37Google Scholar
  144. Novák M, Povondra P (1995) Elbaite pegmatites in the Moldanubicum: a new subtype of the rare-element class. Mineral Petrol 55:159–176CrossRefGoogle Scholar
  145. Novák M, Selway JB (1997) Locality no. 1: Rožná near Bystřice nad Pernštejnem, Hradisko hill, a large lepidolite subtype pegmatite dike. In: Novák M, Selway JB (eds) International symposium Tourmaline 1997, Nové Město na Moravě, Czech Republic. Field trip guidebook, pp 23–38Google Scholar
  146. Novák M, Černý P, Čech F, Staněk J (1992) Granitic pegmatites in the territory of the Bohemian and Moravian Moldanubicum. In: Novák M, Černý P (eds) International symposium on mineralogy, petrology and geochemistry of granitic pegmatites, Lepidolite 200, Nové Město na Moravě, Czech Republic. Field trip guidebook, pp 11–20Google Scholar
  147. Novák M, Selway JB, Černý P, Hawthorne FC, Ottolini L (1999) Tourmaline of the elbaite–dravite series from an elbaite-subtype pegmatite at Bližná, southern Bohemia, Czech Republic. Eur J Mineral 11:557–568CrossRefGoogle Scholar
  148. Novák M, Cerný P, Uher P (2003) Extreme variation and apparent reversal of Nb-Ta fractionation in columbite-group minerals from the Scheibengraben beryl-columbite granite pegmatite, Marsikov, Czech Republic. Eur J Mineral 15:565–574CrossRefGoogle Scholar
  149. Novák M, Černý P, Cempírek J, Šrein V, Filip J (2004) Ferrotapiolite as a pseudomorph of stibiotantalite from the lastovicky lepidolite pegmatite, Czech Epublic; an example of hydrothermal alteration at constant Ta/(Ta + Nb). Can Mineral 42:1117–1128CrossRefGoogle Scholar
  150. Novák M, Škoda R, Gadas P, Krmíček L, Černý P (2012) Contrasting origins of the mixed (NYF + LCT) signature in granitic pegmatites, with examples from the Moldanubian Zone, Czech Republic. Can Mineral 50:1077–1094CrossRefGoogle Scholar
  151. Oberc-Dziedzic T, Kryza R (2012) Late stage Variscan magmatism in the Strzelin Massif (SW Poland): SHRIMP zircon ages of tonalite and Bt-Ms granite of the Gęsiniec intrusion. Geol Q 56:225–236CrossRefGoogle Scholar
  152. Oberc-Dziedzic T, Kryza R, Białek J (2010) Variscan multistage granitoid magmatism in Brunovistulicum: petrological and SHRIMP U-Pb zircon geochronological evidence from the southern part of the Strzelin Massif, SW Poland. Geol Q 54:301–324Google Scholar
  153. Oncken O (1997) Transformation of a magmatic arc and an orogenic root during oblique collision and its consequence for the evolution of the European Variscides (Mid-German Crystalline Rise). Geol Rundsch 86:2–20CrossRefGoogle Scholar
  154. Osann A (1927) Die Mineralien Badens. Schweizerbart, Stuttgart, 239 ppGoogle Scholar
  155. Pašava J, Hladikova J, Dobes P (1996) Origin of metal-rich black shales from the Bohemian Massif, Czech Republic. Econ Geol 91:63–79CrossRefGoogle Scholar
  156. Patočka F, Vrba J (1989) The comparison of stratabound massive sulfides deposits using the fuzzy-linguistic diagnosis of the Zlaté Hory deposits, Czechoslovakia, as an example. Mineral Deposita 4:192–198CrossRefGoogle Scholar
  157. Pertold Z (1978) Prospects of the stratiform deposits of the Bohemian massif. In: Kužwart M (ed) Theoretical basic prognoses of the raw materials in Czechoslovakia, pp 118–123. (in Czech)Google Scholar
  158. Petrakakis K (1997) Evolution of Moldanubian rocks in Austria: review and synthesis. J Metamorph Geol 15:203–222CrossRefGoogle Scholar
  159. Pezzotta F, Guastoni A (1998) Rossmanit aus Rozna (CR) und Elba (I). Lapis 9:38–40Google Scholar
  160. Pieczka A (2000) A rare mineral-bearing pegmatite from the serpentinite massif, the Fore-Sudetic Block, SW Poland. Geol Sudet 33:23–31Google Scholar
  161. Pin C, Puziewicz J, Duthou JL (1989) Ages and origins of a composite granitic massif in the Variscan belt: a Rb-Sr study of the Strzegom-Sobótka Massif, W Sudetes (Poland). Neues Jb Mineral Abh 160:71–82Google Scholar
  162. Pitcher WS (1979) The nature, ascent and emplacement of granitic magmas. J Geol Soc Lond 136:627–662CrossRefGoogle Scholar
  163. Pitcher WS (1982) Granite type and tectonic environment. In: Hsü KJ (ed) Mountain building processes. Academic, London, pp 19–40Google Scholar
  164. Postl W, Golob P (1979) Ilmenorutil (Nb-Rutil), Columbit und Zinnstein aus dem Spodumenpegmatit im Wildbachgraben, Koralpe (Steiermark). Mitt-Bl Abt Miner Landesmuseum Joanneum 47:27–35Google Scholar
  165. Pouba Z, Ilavsky J (1986) Czechoslovakia. In: Dunning FW, Evans AM (eds) Mineral deposits of Europe, 3, Central Europe. IMM & Mineralogical Society, London, pp 117–173Google Scholar
  166. Povondra P, Pivec E, Čech F, Lang M, Novák F, Prachař I, Ulrych J (1987) Přibyslavice peraluminous granite. Acta Univ Carol Geol 3:183–283Google Scholar
  167. Povondra P, Staňková J, Staněk J (1992) CO2 –bearing cordierite of Moldanubian leptynite rock series from Horní Bory, Czech Republic. Acta Univ Carol Geol 1992:331–349Google Scholar
  168. Povondra P, Lang M, Pivec E, Ulrych J (1998) Tourmaline from the Přibyslavice peraluminous alkali-feldspar granite, Czech Republic. J Czech Geol Soc 43:3–8Google Scholar
  169. Prachař I, Povondra P, Novák F (1983) Manganese-rich siderite from granite at Přibyslavice near Čáslav. Acta Univ Carol Geol 1983:13–25Google Scholar
  170. Radvanec M, Grecula P, Žák K (2004) Siderite mineralization of the Gemericum Superunit (Western Carpathians, Slovakia): review and a revised genetic model. Ore Geol Rev 24:267–298CrossRefGoogle Scholar
  171. Rafailovich M (1997) Epithermal gold deposits of Kazakhstan. In: Bekzanov GR, Dudich E, Gaál G, Jenchuraeva RJ (eds) Paleozoic granite-related Au, Cu, Mo, W, REE deposits and epithermal gold deposits, IUGS/UNESCO Deposit Modeling Program, workshop, 31 August–14 September, 1997, Kazakhstan and Kyrgyzstan, Budapest, pp 54–55Google Scholar
  172. Richter P, Stettner G (1979) Geochemische und petrographische Untersuchungen der Fichtelgebirgsgranite. Geologica Bavarica 78:1–144Google Scholar
  173. Rolland Y, Cox S, Boullie AM, Pennacchioni G, Mancktelow N (2003) Rare earth and trace element mobility in mid-crustal shear zones: insights from the Mont Blanc Massif (Western Alps). Earth Planet Sci Lett 214:203–219CrossRefGoogle Scholar
  174. Schaltegger U (2000) U-Pb geochronology of the southern Black Forest Batholith (Central Variscan Belt): timing of exhumation and granite emplacement. Int J Earth Sci 88:814–828CrossRefGoogle Scholar
  175. Schaltegger U, Corfu F (1995) Late Variscan “Basin and Range” magmatism and tectonics in the Central Alps: evidence from U-Pb geochronology. Geodin Acta 8:82–98CrossRefGoogle Scholar
  176. Schleicher H (1994) Collision-type granitic melts in the context of thrust tectonics and uplift history (Triberg granite complex, Schwarzwald, Germany). Neues Jb Mineral Abh 166:211–237Google Scholar
  177. Schneiderhöhn H (1961) Die pegmatite [The pegmatites]. Gustav Fischer Verlag, Stuttgart, 720 pp. (in German)Google Scholar
  178. Schorr T (1984) Beryll aus dem Schwarzwald. Lapis 9:22Google Scholar
  179. Schüssler U, Oppermann U, Kreuzer H, Seidel E, Okrusch M, Lenz K-L, Raschka H (1986) Zur Altersstellung des ostbayerischen Kristallins-Ergebnisse neuer K-Ar-Datierungen. Geologica Bavarica 89:21–47Google Scholar
  180. Sebastian U (2013) Die Geologie des Erzgebirges. Springer Spektrum, Berlin/Heidelberg 268 ppCrossRefGoogle Scholar
  181. Seeland F (1876) Der Hüttenberger Erzberg und seine nächste Umgebung. Jahrbuch der Geologischen Reichsanstalt 26:49–112Google Scholar
  182. Seltmann R, Faragher AE (1994) Collisional orogens and their related metallogeny-a preface. In: Seltmann R, Kämpf H, Möller P (eds) Metallogeny of collision orogen. Czech Geological Survey, Prague, pp 7–19Google Scholar
  183. Selway JB, Novák M, Hawthorne FC, Černý P, Ottolini L, Kyser TK (1998) Rossmanite LiA 2Al 6(BO3)3Si6O18(OH)4, a new alkali-deficient tourmaline: description and crystal structure. Am Mineral 83:894–900Google Scholar
  184. Selway JB, Novák M, Černý P, Hawthorne FC (1999) Compositional evolution of tourmaline in lepidolite-subtype pegmatites. Eur J Mineral 12:569–584Google Scholar
  185. Škoda R, Novák M (2007) Y, REE, Nb, Ta, Ti-oxide (AB 2 O 6)minerals from REL-REE euxenite-subtype pegmatites of the Třebíč Pluton, Czech Republic; substitutions and fractionation trends. Lithos 95:43–99CrossRefGoogle Scholar
  186. Söllner P, Köhler H, Müller-Sohnius D (1981) Rb/Sr Altersbestimmungen an Gesteinen der Münchberger Gneismasse (M.N:), NE-Bayern; Teil 1 Gesamtgesteinsdatierungen. Neues Jb Mineral Abh 141:90–112Google Scholar
  187. Stein E (1988) Die strukturgeologische Entwicklung im Übergangsbereich Saxothuringikum/ Moldanubikum in NE-Bayern. Geologica Bavarica 92:5–131Google Scholar
  188. Štemprok M, Seltmann R (1994) The metallogeny of the Erzgebirge (Krušné Hory). In: Seltmann R, Kämpf H, Möller P (eds) Metallogeny of collision orogen. Czech Geological Survey, Prague, pp 61–69Google Scholar
  189. Stochs HG, Lugmair GW (1986) Geochemistry and evolution of eclogites from the Münchberg Gneiss Massif, W-Germany. Terra Cognita 6:254Google Scholar
  190. Stochs HG, Lugmair GW (1987) Geochronology and geochemistry of eclogites from the Münchberg Gneiss Massif Germany. Terra Cognita 7:163Google Scholar
  191. Suess E (1888) Das Antlitz der Erde. Zweiter Band. Temsky/Freytag, Prag/Wien/Leipzig, 703 ppGoogle Scholar
  192. Tankard AJ, Jackson MPA, Eriksson KA, Hobday DK, Hunter DR, Minter WEL (1982) Crustal evolution of southern Africa. Springer, Heidelberg/New York/Berlin 523 ppCrossRefGoogle Scholar
  193. Taucher J, Walter F, Postl W (1992) Mineralparagenesen in Pegmatiten der Koralpe. Teil1: Die Lithium-Lagerstätte am Brandrücken, Weinebene, Koralpe, Kärnten. Die Minerale des feinkörnigen Spodumenpegmatits (MH-Pegmatit). Matrix 1:23–72Google Scholar
  194. Taucher J, Walter F, Postl W (1994) Mineralparagenesen in Pegmatiten der Koralpe. Part 2: Die Lithium-Lagerstätte am Brandrücken, Weinebene, Kärnten. Die Minerale des grobkörnigen Spodumenpegmatits (AH-Pegmatit) sowie die Minerale der Pegmatitrandgesteine. Matrix 3:19–52Google Scholar
  195. Taylor BE, Beaudoin G (2000) Sulphur stratigraphy of the Sullivan Pb–Zn–Ag deposit, B.C: evidence for hydrothermal sulphur, and bacterial and thermochemical sulphate reduction. In: Lydon JW, Höy T, Slack JF, Knapp M (eds) The Sullivan Deposit and its geological environment, Special publication Mineral Deposits Division of the Geological Association of Canada, 1. Geological Association of Canada, Mineral Deposits Division, St. John’s, pp 696–719Google Scholar
  196. Teipel U, Eichhorn R, Höll R, Kennedy A (2002) Neoproterozoic and lower Ordovician magmatic events in the western Bohemian Massif (Bayerischer Wald, Germany)-preliminary results from SHRIMP dating. In: Niebuhr B (ed) Geo 2002, Planet Erde, Vergangenheit, Entwicklung, Zukunft, October 1 through 5, 2002, Würzburg. Deutsche Geologische Gesellschaft, Hannover, pp 327–328Google Scholar
  197. Thöni M, Miller C (2004) Ordovician meta-pegmatite garnet (N-W Ötztal basement, Tyrol, Eastern Alps): preservation of magmatic garnet chemistry and Sm–Nd age during mylonitization. Chem Geol 209:1–26CrossRefGoogle Scholar
  198. Thöni M, Miller C, Zanetti A, Habler G, Goessler W (2008) Sm–Nd isotope systematics of high-REE accessory minerals and major phases: ID-TIMS, LA-ICP-MS and EPMA data constrain multiple Permian–Triassic pegmatite emplacement in the Koralpe, Eastern Alps. Chem Geol 254:216–237CrossRefGoogle Scholar
  199. Timmermann H, Krenn E, Dörr W, Finger F, Zulauf G (2002) Cadomian and Variscan metamorphism in the Teplá-Barrandian unit, northwestern Bohemian Massif: implications for the resetting of the U-Pb systematics in monazites. In: Niebuhr B (ed) Geo 2002, Planet Erde, Vergangenheit, Entwicklung, Zukunft, October 1 through 5, 2002, Würzburg. Deutsche Geologische Gesellschaft, Hannover, pp 331–332Google Scholar
  200. Tischendorf G, Förster HJ (1990) Acid magmatism and related metallogenesis in the Erzgebirge. Geol J 25:443–454CrossRefGoogle Scholar
  201. Tischendorf G, Geisler M, Gerstenberger H, Budzinski H, Vogler P (1987) Geochemistry of Variscan granites of the Westerzgebirge-Vogtland Region-an example of tin deposit-generating granites. Chemie der Erde/Geochem 46:213–235Google Scholar
  202. Tischendorf G, Dill HG, Förster HJ (1995b) Metallogenesis of the Saxothuringian Basins. In: Dallmeyer RD, Franke W, Weber K (eds) Tectono-stratigraphic evolution of the Central and East European orogens. Springer, Heidelberg, pp 266–273Google Scholar
  203. Todt W (1979) U-Pb-Datierungen an Zirkonen des kristallinen Odenwaldes. Fortschritte Mineralogie (Beiheft) 57:153–154Google Scholar
  204. Tollmann A (1977) Geologie von Österreich, Band 1. Die Zentralalpen. Deuticke-Verlag, Wien 766 ppGoogle Scholar
  205. Tollmann A (1982) Grossräumiger variszischer Deckenbau im Moldaunubikum und neue Gedanken zum Variszikum Europas. Geotektonische Forschung 64:1–91Google Scholar
  206. Trümpy R (1980) Geology of Switzerland. Wepf, Basel, 334 ppGoogle Scholar
  207. Ucik F (2005) Die Feldspatpegmatite des Millstättersee-Rückens. Arbeitstagung der Geologischen Bundesanstalt Blatt 182 Spittal an der Drau, Gmünd/ Kärnten, 12–16 September, p 135Google Scholar
  208. Uher P, Broska I (1995) Pegmatites in two suites of Variscan orogenic granitic rocks (Western Carpathians, Slovakia). Mineral Petrol 55:27–36CrossRefGoogle Scholar
  209. Uher P, Černý P (1998) Zircon in Hercynian granitic pegmatites of the western Carpathians, Slovakia. Geol Carpath 49:261–270Google Scholar
  210. Uher P, Černý P, Chapman R, Hatar J, Miko O (1998a) Evolution of Nb, Ta-oxide minerals in the Prašivá granite pegmatites, Slovakia. primary Fe, Ti-rich assemblages. Can Mineral 36:525–534Google Scholar
  211. Uher P, Černý P, Chapman R, Hatar J, Miko O (1998b) Evolution of Nb, Ta-oxide minerals in the Prasiva granitic pegmatites, Slovakia; II, External hydrothermal Pb, Sb overprint. Can Mineral 36:535–545Google Scholar
  212. Uher P, Dávidová Š, Vikár I (2001) Schorl composition from the barren granitic pegmatites in the Western Carpathians: two examples from the Nízké Tatry mountains. J Czech Geol Soc 46:21–26Google Scholar
  213. Uher P, Bačík P, Ozdín D, Števko M (2012) Beryl in granitic pegmatites of the Western Carpathians (Slovakia): compositional variations, mineral inclusions and breakdown products. Acta Mineralogica-Petrographica, Abstract Series, Szeged, 7:144Google Scholar
  214. Van Breemen O, Bowes DR, Aftalion M, Żelaźniewicz A (1988) Devonian tectonothermal activity in the Sowie Góry Gneissic Block, Sudetes, Southwestern Poland: evidence from Rb-Sr and U-Pb isotopic studies. Rocz Pol Towarz Geol 58:3–19Google Scholar
  215. Van Houten FB, Hou HF (1990) Stratigraphic and palaeogeographic distribution of Palaeozoic oolitic ironstones. In: McKerrow WS, Scotese CR (eds) Palaeozoic palaeogeography and biogeography, Geological Society Memoire, 12. Geological Society, London, pp 87–93Google Scholar
  216. Vanĕček M, Patočka F, Pošmournŷ K, Raijlich P (1985) The use of the isotope composition of ore lead in metallogenic analysis of the Bohemian Massif. Rozpravy Ceskoslovenské Akademie Ved, Rada Matematických a Prírodních Ved 95:1–114Google Scholar
  217. von Raumer JF, Stampfli GM, Bussy F (2003) Gondwana-derived microcontinents – the constituents of the Variscan and Alpine collision orogens. Tectonophysics 365:7–22CrossRefGoogle Scholar
  218. Wagner T, Boyce AJ (2001) Sulphur isotope characteristics of recrystallisation, remobilisation and reaction processes: a case study from the Ramsbeck Pb-Zn deposit, Germany. Mineral Deposita 36:670–679CrossRefGoogle Scholar
  219. Wagner T, Boyce AJ (2003) Sulphur isotope geochemistry of black shale-hosted antimony mineralization, Arnsberg, northern Rhenish Massif, Germany: implications for late-stage fluid flow during the Variscan orogeny. J Geol Soc Lond 160:299–308CrossRefGoogle Scholar
  220. Walter R (1992) Die Geologie von Mitteleuropa, 5th edn. Schweizerbart, Stuttgart, 561 ppGoogle Scholar
  221. Walter F, Postl W, Taucher J (1990) Weinebeneit: Paragenese und Morphologie eines neuen Ca-Be-Phosphates von der Spodumenpegmatit-Lagerstätte Weinebene, Koralpe, Kärnten. Mitt Abt Miner Landesmuseum Joanneum 58:37–43Google Scholar
  222. Weber B (1978a) Mineralien aus den Metapegmatiten Wilma und Gertrude bei Obersdorf und Menzlhof in der Oberpfalz. Aufschluss 29:325–329Google Scholar
  223. Weber K (1978b) Das Bewegungsbild im Rhenoherzynikum – Abbild einer varistischen Subfluenz. Z Dtsch Geol Ges 129:249–281Google Scholar
  224. Weber K (1995) Introduction. In: Dallmeyer RD, Franke W, Weber K (eds) Pre-permian geology of central and eastern Europe. Springer, Berlin, pp 153–154CrossRefGoogle Scholar
  225. Weber K, Behr JH (1983) Geodynamic interpretation of the Mid-European Variscides. In: Martin H, Eder FW (eds) Intercontinental fold belts. Springer, Berlin/Heidelberg/New York, pp 427–469CrossRefGoogle Scholar
  226. Websky M (1868) Über Sarkopsid und Kochelit, zwei neue Minerale aus Schlesien. Zeitschrift der Deutschen Geologische Gesellschaft 20:245Google Scholar
  227. Weger M, Loth G, Höll R, Masch L, Köhler H, Rohrmüller J (1998) The early tectonometamorphic evolution of the southern zone of Erbendorf-Vohenstrauss (ZV, NW-Bohemian Massif, Bavaria) inferred from geochemical, radiometric, petrologic, and structural characteristics. Acta Univ Carol Geol 42:357Google Scholar
  228. Wendt I, Kreuzer H, Müller P, Schmidt H (1986) Gesteins- und Mineraldatierungen des Falkenberger Granits. Geol Jahrb E 34:5–67Google Scholar
  229. Werner W, Walther HJ (1995) Metallogenesis. In: Dallmeyer RD, Franke W, Weber K (eds) Pre-permian geology of central and eastern Europe. Springer, Berlin, pp 87–95CrossRefGoogle Scholar
  230. Wignal PB (1991) Model for transgressive black shales? Geology 19:167–170CrossRefGoogle Scholar
  231. Will TM, Schmädicke E (2001) A first report of retrogressed eclogites in the Odenwald Crystalline Complex: evidence for high‐pressure metamorphism in the Mid‐German Crystalline Rise, Germany. Lithos 59:109–125CrossRefGoogle Scholar
  232. Willner AP, Klemm I, Rötzler K, Maresch WV (1995) Petrologische Belege aus dem mittelkrustalen Niveau für eine variskische Krustenstapelung im Erzgebirge. Terra Nostra 95/8:138Google Scholar
  233. Žáček V, Novák M, Raimboult L, Zachariáš J, Ackerman L (2003) Locality No. 8: Vlastějovice near Ledeč nad Sázavou. Fe-skarn, barren fluorite pegmatite. In: Novák M (ed) International symposium on light elements in rock forming minerals LERM 2003, Nové Město na Moravě, Czech Republic. Field trip guidebook, pp 61–70Google Scholar
  234. Zachariáš J, Pudilová M (2002) Fluid inclusion and stable isotope study of the Kasejovice gold district, central Bohemia. Bull Czech Geol Surv 77:157–165Google Scholar
  235. Zachariáš J, Stein H (2001) Re-Os ages of Variscan hydrothermal gold mineralisations, Central Bohemian metallogenetic zone, Czech Republic. In: Piestrzyński A et al (eds) Mineral deposits at the beginning of the 21st century. Swets & Zeitlinger Publishers, Lisse, pp 851–854Google Scholar
  236. Zeh A, Will TM (2010) The mid‐German crystalline rise. In: Linnemann U, Romer RL (eds) Pre‐Mesozoic geology of Saxo‐Thuringia – from the Cadomian active margin to the Variscan orogen. Schweizerbart, Stuttgart, pp 195–220Google Scholar
  237. Zeh A, Gerdes A, Will TM, Millar IL (2005) Provenance and magmatic‐metamorphic evolution of a Variscan island arc complex: constraints from U-Pb dating, petrology, and geospeedometry of the Kyffhäuser Crystalline Complex, Central Germany. J Petrol 32:1393–1420CrossRefGoogle Scholar
  238. Żelaźniewicz A (1995) Introduction (Lugicum). In: Dallmeyer RD, Franke W, Weber K (eds) Tectono-stratigraphic evolution of the Central and East European orogens. Springer, Heidelberg, pp 311–314Google Scholar
  239. Ziegler AM, Hansen KS, Johnson ME, Kelly MA, Scotese CR, Van der Voo R (1977) Silurian continental distributions, paleogeography, climatology, and biogeography. Tectonophysics 40:13–51CrossRefGoogle Scholar
  240. Zulauf G, Schitter F, Riegler G, Finger F, Fiala J, Vejnar Z (1999) Age constraints on the Cadomian evolution of the Teplá-Barrandian unit (Bohemian Massif) through electron microprobe dating of metamorphic monazite. Z Dtsch Geol Ges 150:627–640Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Harald G. Dill
    • 1
  1. 1.Gottfried-Wilhelm-Leibniz UniversityHannoverGermany

Personalised recommendations