Skip to main content

Pegmatitic Rocks and Economic Geology

  • Chapter
  • 892 Accesses

Part of the book series: Modern Approaches in Solid Earth Sciences ((MASE,volume 15))

Abstract

Three minerals contribute to the built-up of Earth’s crust by almost ¾ and predominate in the group of industrial minerals. Feldspar is the top scorer with 56 vol.%; quartz is second most in abundance and accounts for 12 vol.% while phyllosilicates of the mica group are fifth among the top 10 with 4 vol.%. They are the major rock-forming constituents of the granite suite and the pegmatitic and aplitic rocks. Pegmatitic rocks similar in the gross mineralogical composition to granites but conspicuously different in size and quality of their minerals can deliver much better to the requirements of consumers from the industry using feldspar, quartz and mica as a raw material. In addition, these rocks may contain specific elements present in quantity so that they attain even ore grade as it is the case with Nb, Ta, Li, Mo, Sn, W, Be, Sc, Cs, Rb, REE, Y and U or they are targeted upon for their gemstones such as B, Be and Li. Although operated mainly for their quartz and feldspar contents, some of these rocks in Central Europe are also strongly enriched in rare elements such as Li, Nb, Ta, Be, REE and U and therefore have not only attracted the attention of mining engineers interested in industrial minerals but also encouraged mineralogists to investigate the wealth of minerals, with much success. The Hagendorf-Pleystein mining district consists of several pegmatites and aplites, including the largest pegmatite stock in Central Europe at Hagendorf-South, with more than 200 minerals. In the “Chessboard classification scheme of mineral deposits” (Dill, Earth Sci Rev 100:1–420, 2010) the outstanding economic importance of pegmatitic and aplitic rocks, particularly for future technologies is on a world-wide scale in context with other mineral deposits hosted by magmatic and metamorphic rocks. Several attempts have been made to squeeze pegmatites into classification schemes, yet with different success. A classification scheme should cater for the extractive and genetic part of economic geology alike. A new classification scheme, which is based on the Chemical composition, the Mineral assemblage and the Structural geology of pegmatitic rocks and for which the acronym CMS has been coined is put forward as “CMS classification scheme of pegmatitic and aplitic rocks” (Dill, Ore Geol Rev 69, 2015). It can be used in a short and long version and has two major columns the ore body and ore composition, it can be correlated with the “Chessboard classification scheme of mineral deposits”, and as such open for amendments and applicable also in a digital way. The extractive geology of various types of pegmatitic and rocks is depicted from the past until today.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adusumilli MS, Castro C, Bhaskara Rao A (1994) Blue and green tourmalines from Greogrio pegmatite, Brazil. Int Mineral Assoc Meet Abstr 16:3–4

    Google Scholar 

  • Bariand P, Poullen JF (1978) The Pegmatites of Laghman, Nuristan, Afghanistan. Miner Rec 301–308

    Google Scholar 

  • Bates RL, Jackson JA (1987) Glossary of geology. American Geological Institute, Alexandria, 788 pp

    Google Scholar 

  • Bauberger W (1957) Über die “Albitpegmatite” der Münchberger Gneissmasse und ihre Nebengesteine. Geologica Bavarica 36:5–77

    Google Scholar 

  • Bayerisches Oberbergamt (1924) Die nutzbaren Mineralien, Gesteine und Erden Bayerns. R.Oldenburg, Piloty & Loehle, München, 210 pp

    Google Scholar 

  • Bernhard F, Walter F, Ettinger K, Taucher J, Merreiter K (1998) Pretulite, Sc(PO4), a new scandium mineral from Styrian and Lower Austrian lazulite occurrences, Austria. Am Mineral 83:625–630

    Google Scholar 

  • Bjørlykke H (1937) Mineral parageneses of some granite pegmatites near Kragerø, Southern Norway. Nor Geol Tidsskr 17:1–16

    Google Scholar 

  • Borisova AY, Thomas R, Salvi S, Candaudap F, Lanzanova A, Chmeleff J (2012) Tin and associated metal and metalloid geochemistry by femtosecond LA-ICP-QMS microanalysis of pegmatite–leucogranite melt and fluid inclusions: new evidence for melt–melt–fluid immiscibility. Mineral Mag 76:91–113

    Article  Google Scholar 

  • Breiter K, Siebel W (1995) Granitoids in the Rozvadov pluton. Geol Rundsch 84:506–519

    Article  Google Scholar 

  • Cameron EN, Jahns RH, McNair AH, Page LR (1949) Internal structure of pegmatites. Econ Geol Monogr 2:1–115

    Google Scholar 

  • Černý P (1972) The Tanco pegmatite at Bernic Lake Manitoba W, Eucryptite. Can Mineral 11:708–713

    Google Scholar 

  • Černý P (1989) Exploration strategy and methods for pegmatite deposits of tantalum. In: Möller P, Cerný P, Saupé F (eds) Lanthanides, tantalum and niobium. Springer, Heidelberg, pp 274–310

    Google Scholar 

  • Černý P (1991) Rare-element granitic pegmatites: Part I: Anatomy and internal evolution of pegmatite deposits. Part II: Regional and global environments and petrogenesis. Geosci Can 18:49–81

    Google Scholar 

  • Černý P, Ercit TS (2005) The classification of granitic pegmatites revisited. Can Mineral 43:2005–2026

    Article  Google Scholar 

  • Černý P, Ferguson RB (1972) The Tanco pegmatite at Bernic Lake Manitoba. VI, Petalite and spodumene relations. Can Mineral 11:690–707

    Google Scholar 

  • Černý P, Simpson FM (1977) The Tanco pegmatite at Bernic Lake Manitoba: the Beryl. Can Mineral 15:489–499

    Google Scholar 

  • Černý P, Simpson FM (1978) The Tanco pegmatite at Bernic Lake Manitoba X, Pollucite. Can Mineral 16:325–333

    Google Scholar 

  • Čech F, Mísa Z, Povondra P (1971) A green lead-containing orthoclase. Miner Pet 15:213–231

    Google Scholar 

  • Davis H, Reynolds SJ (1996) The structural geology of rocks and regions, 2nd edn. Wiley, New York

    Google Scholar 

  • Delaney PJV (1992) Gemstones of Brazil: geology and occurrences, Revista Escola de Minas, Praca Tiradentes 20. Editora REM-Revista Escola de Minas, Ouro Preto, 125 pp

    Google Scholar 

  • Dill HG (1979) Der Feldspat-Bergbau in der Münchberger Gneismasse. Bergbau 30:301–304

    Google Scholar 

  • Dill HG (2007) A review of mineral resources in Malawi: with special reference to aluminium variation in mineral deposits. J Afr Earth Sci 47:153–173

    Article  Google Scholar 

  • Dill HG (2010) The “chessboard” classification scheme of mineral deposits: mineralogy and geology from aluminum to zirconium. Earth-Sci Rev 100:1–420

    Article  Google Scholar 

  • Dill HG, Lohmann D (2011) Die Zeit der billigen Rohstoffe ist vorbei – Prof. Harald G. Dill im Interview. In: Lohmann D, und Podbregar N (Editoren und Autoren) Im Fokus: Bodenschätze- Auf der Suche nach Rohstoffen. Springer, Heidelberg/Dordrecht/London/New York, pp 29–39

    Google Scholar 

  • Dill HG, Röhling S (2007) Bodenschätze der Bundesrepublik Deutschland 1: 1 000 000 (unter Mitarbeit der Geologischen Dienste der Bundesländer). Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover

    Google Scholar 

  • Dill HG, Weber B (2011) Die Oberpfälzer Flussspat-Anthologie – “Bunte Steine” prägen die Region und ihre Menschen um den Wölsenberg. Verlag Druckkultur Späthling, Weissenstadt, 311 pp

    Google Scholar 

  • Dill HG, Weber B, Fuessl M, Melcher F (2006a) The origin of the hydrous scandium phosphate kolbeckite from the Hagendorf – Pleystein pegmatite province, Germany. Mineral Mag 70:281–290

    Article  Google Scholar 

  • Dill HG, Melcher F, Fuessl M, Weber B (2006b) Accessory minerals in cassiterite: a tool for provenance and environmental analyses of colluvial-fluvial placer deposits (NE Bavaria, Germany). Sediment Geol 191:171–189

    Article  Google Scholar 

  • Dill HG, Khishigsuren S, Majigsuren Y, Myagmarsuren S, Bulgamaa J, Hongor O (2006c) A review of industrial minerals of Mongolia: the impact of geological and geographical factors on their formation and use. Int Geol Rev 48:129–170

    Article  Google Scholar 

  • Dill HG, Sachsenhofer RF, Grecula P, Sasvári T, Palinkaš LA, Borojević-Šoštarić S, Strmić-Palinkaš S, Prochaska W, Garuti G, Zaccarini F, Arbouille D, Schulz H-M (2008a) Fossil fuels, ore – and industrial minerals. In: McCann T (ed) Geology of Central Europe, Special publication. Geological Society of London, London, pp 1341–1449

    Google Scholar 

  • Dill HG, Sachsenhofer RF, Grecula P, Sasvári T, Palinkaš LA, Borojević-Šoštarić S, Strmić-Palinkaš S, Prochaska W, Garuti G, Zaccarini F, Arbouille D, Schulz H-M, Locmelis B (2008b) The origin of mineral and energy resources of Central Europe (map 1: 2500000). Geological Society of London, London (on CD ROM)

    Google Scholar 

  • Dill HG, Melcher F, Gerdes A, Weber B (2008c) The origin and zoning of hypogene and supergene Fe-Mn-Mg-Sc-U-REE-Zn phosphate mineralization from the newly discovered Trutzhofmühle aplite (Hagendorf pegmatite province, Germany). Can Mineral 46:1131–1157

    Article  Google Scholar 

  • DuBois C, Walsh J (1970) Minerals of Kenya. Geol Surv Kenya Bull 11:1–82

    Google Scholar 

  • Ecrit TS (2005) REE-enriched granitic pegmatites. In: Linnen RL, Sampson IM (eds) Rare-element geochemistry and mineral deposits. Geological Association of Canada, St. John’s, pp 175–199

    Google Scholar 

  • Emmert U, Stettner G (1968) Erläuterung zur geologischen Karte von Bayern 1.25000, Sheet No. 5737, Schwarzenbach a.d. sächsischen Saale, Geological Survey of Bavaria, München, 236 pp

    Google Scholar 

  • Emmert U, Horstig von G, Weinelt Wi (1960) Erläuterung zur geologischen Karte von Bayern 1.25000, Sheet No. 5835, Stadtsteinach, Geological Survey of Bavaria, München, 279 pp

    Google Scholar 

  • Fersman A (1930) O geokhimicheskoi geneticheskoi klassifikatsii granitnykh pegmatitov (A geochemical genetic classification of pegmatites). Monograph Akademiia Nauk SSSR. (in Russian)

    Google Scholar 

  • Forster A (1965) Erläuterungen zur Geologischen Karte von Bayern 1:25000 Blatt Vohenstrauss/Frankenreuth. GLA, München, 174 pp

    Google Scholar 

  • Forster A, Kummer R (1974) The pegmatites in the area of Pleystein-Hagendorf/ North Eastern Bavaria. Fortschritte Mineralogie 52:89–99

    Google Scholar 

  • Forster A, Strunz H, Tennsyson C (1967) Die Pegmatite des Oberpfälzer Waldes, insbesondere der Pegmatit von Hagendorf-Süd. Aufschluss Spec Pub 16:137–198

    Google Scholar 

  • Fossen H (2010) Structural geology. Cambridge University Press, Cambridge, 480 pp

    Book  Google Scholar 

  • Fry N (1991) The field description of metamorphic rocks, Geological Society of London handbook series, Book 14. Wiley, London, 112 pp

    Google Scholar 

  • Galliski MA, Lira R, Dorais MJ (2004) Low-pressure differentiation of melanephelinitic magma and the origin of ijolite pegmatites at La Madera, Córdoba, Argentina. Can Mineral 42:1799–1823

    Article  Google Scholar 

  • Ginsburg AI, Rodionov GG (1960) On the depths of the granitic pegmatite formation. Geologiya Rudnykh Mestorozhdenyi, Izd. Nauka, Moskva l:45–54

    Google Scholar 

  • Ginsburg AI, Timofeyev IN, Feldman LG (1979) Principles of geology of the granitic pegmatites. Nedra, Moscow, 296 pp. (in Russian)

    Google Scholar 

  • Göd R (1978) Vorläufige Mitteilung über einen Spodumen-Holmquistit führenden Pegmatit aus Kärnten. Anzeiger der Akademie der Wissenschaften, mathematisch-naturwissenschaftliche Klasse 115:161–165

    Google Scholar 

  • Göd R (1989) The spodumene deposit at “Weinebene” Koralpe, Austria. Mineral Deposita 24:270–278

    Article  Google Scholar 

  • Grew ES (1988) Kornerupine at the Sar-e-Sang, Afghanistan, whiteschist locality: implications for tourmaline-kornerupine distribution in metamorphic rocks. Am Mineral 73:345–357

    Google Scholar 

  • Harben PW, Kužvart M (1996) Industrial minerals: a global geology. London Industrial Minerals Information Ltd., London, 462 pp

    Google Scholar 

  • Hauzenberger CA, Häger T, Sutthirat C, Bojar A-V, Kienzel N (2005) Geochemical characterization of corundum from different gem deposits: a stable isotope and trace element study. Gem-materials and modern analytical methods. GEM.MAT.MAM, Hanoi, 3 rd international workshop, pp 55–62

    Google Scholar 

  • Hughes RW (1990) Corundum. Butterworth-Heinmann, London, 314 pp

    Google Scholar 

  • Jahns RH, Burnham CW (1969) Experimental studies of pegmatite genesis: I: a model for the derivation and crystallization of granitic pegmatites. Econ Geol 64:843–864

    Article  Google Scholar 

  • Jaszczak A, Dimovski S, Hackney SA, Robinson GW, Bosio P, Gogotsi Y (2007) Micro- and nano-scale graphite cones and tubes from Hackman Valley, Kola Peninsula, Russia. Can Mineral 45:379–389

    Article  Google Scholar 

  • Keck E (1990) Hagendorf-Sued-Ein kurzer historischer Überblick. Aufschluss 41:54–66

    Google Scholar 

  • Kievlenko EY (2003) Geology of gems. Ocean Publications Ltd., Littleton. 432. pp

    Google Scholar 

  • Kippenberger C, Krauss U, Kruzona M, Schmidt H, Thormann A, Priem J, Wettig E (1988) Lithium. Untersuchungen über Angebot und Nachfrage mineralischer Rohstoffe 21:1–212

    Google Scholar 

  • Kopp R (1987) Kurze Betriebsschronik der Feldspatgrube Gertrud by Weiden Opf. Aufschluss 37:75–76

    Google Scholar 

  • Landes KK (1933) Origin and classification of pegmatites. Am Mineral 18:95–103

    Google Scholar 

  • Laurs BM, Simmons WB, Rossman GR, Quinn EP, McClure SF, Peretti A, Armbruster T, Hawthorne FC, Falster AU, Günther D, Cooper MA, Grobéty B (2003) Pezzottaite from Ambatovita, Madagascar: a new gem mineral. Gems Gemol 2003:284–301

    Article  Google Scholar 

  • Linhardt E (2000) Der Beryllpegmatit der Feldspatgrube Maier, Püllersreuth. Lapis 25:13–23

    Google Scholar 

  • Linnen RL, Cuney M (2005) Granite-related rare-element deposits and experimental constraints on Ta-Nb-W-Sn-Zr-Hf mineralization. In: Linnen RL, Samson IM (eds) Rare element geochemistry and mineral deposits, vol 17, Geological Association of Canada short course notes. Geological Association of Canada, St. John’s, pp 45–68

    Google Scholar 

  • Lisle RJ, Brabham P, Barnes JW (2011) Basic geological mapping (Geological Field Guide) paperback, 5th edn. Wiley, 230 pp

    Google Scholar 

  • London D (2008) Pegmatites, Canadian mineralogist, special publication, 10. Mineralogical Association of Canada, Ottawa, pp 1–347

    Google Scholar 

  • Lorenz W (1991) Criteria for the assessment of non-metallic mineral deposits. Geol Jahrb A 27:299–326

    Google Scholar 

  • Lorenz W (1995) Planvolle Ressourcennutzung von Industriemineralien, Steinen und Erden als Teil des Umweltschutzes. Z Angew Geol 41:98–105

    Google Scholar 

  • Markl G, Schumacher C (1997) Beryl stability in local hydrothermal and chemical environments in a mineralized granite. Am Mineral 82:194–202

    Google Scholar 

  • Mücke A (1987) Sekundäre Phosphatmineralien (Perloffit, Brasilianit, Mineralien der Kingsmountit-Gruppe) sowie Brochantit und die Zwieselit-Muschketoffit-Stilpnomelan-Pyrosmalith-Paragenese der 115-m-Sohle des Hagendorfer Pegmatits. Aufschluss 38:5–28

    Google Scholar 

  • Mücke A (1988) Lehnerit Mn[UO2|PO4]2 8H2O, ein neues Mineral aus dem Pegmatit von Hagendorf/Oberpfalz. Aufschluss 39:209–217

    Google Scholar 

  • Mücke A (2000) Die Erzmineralien und deren Paragenesen im Pegmatit von Hagendorf-Süd, Oberpfalz. Aufschluss 51:11–24

    Google Scholar 

  • Mücke A, Keck E, Haase J (1990) Die genetische Entwicklung des Pegmatits von Hagendorf-Süd/Oberpfalz. Aufschluss 41:33–51

    Google Scholar 

  • Müllbauer F (1925) Die Phosphatpegmatite i. Bayern (Neue Beoabachtungen.). Zeitschrift für Kristallographie, Zeitschrift f Kristallographie 64:319–336

    Google Scholar 

  • Niggli P (1920) Die leichtflüchtigen Bestandteile im Magma. Preisschriften der Fürstlich Jablonowskischen Gesellschaft. B.G. Teubner, Leipzig, 272 pp

    Google Scholar 

  • Novák M, Černý P (2001) Distinctive compositional trends in columbite-tantalite from two segments of the lepidolite pegmatite at Rožná, western Moravia, Czech Republic. J Czech Geol Soc 46:1–8

    Google Scholar 

  • Novák JK, Pivec E, Štemprok M (1996) Hydrated iron phosphates in muscovite-albite granite from Waidhaus (Oberpfalz, Germany). J Czech Geol Soc 41:201–207

    Google Scholar 

  • O’Donoghue M (2006) Gems their sources, descriptions and identification. Elsevier, Amsterdam, 873 pp

    Google Scholar 

  • Partington GA, Mc Naughton NJ, Williams IS (1995) A review of the geology, mineralization, and geochronology of the Greenbushes Pegmatite, Western Australia. Econ Geol 90:616–635

    Article  Google Scholar 

  • Petersen JS (1978) Structure of the larvikite – lardalite complex, Oslo-region, Norway, and its evolution international. J Earth Sci 67:330–342

    Google Scholar 

  • Pezzotta F (2001) Madagascar, a mineral and gemstone paradise. Ed, Extralapis English 1. Lapis International LLC, East Hampton, 100 pp

    Google Scholar 

  • Pollner R, Schmidt C, Fischer G, Kuhn K, Poschl E, Dalla Lana IG, Fiedorow R, Gaworski B, Song X, Arnaud NO, Kelley SP (1997) Argon behaviour in gem-quality orthoclase from Madagascar: experiments and some consequences for 40Ar/39Ar geochronology. Geochim Cosmochim Acta 61:3227–3255

    Article  Google Scholar 

  • Popov VA, Popova VI (2006) Ilmeny mountains. Mineralogical Almanac 9, 156 pp

    Google Scholar 

  • Prentice JE (1990) Geology of construction materials. Chapman and Hall, London/New York/Tokyo/Melbourne/Madras, 201 pp

    Google Scholar 

  • Raade G, Ferraris G, Gula A, Ivaldi G, Bernhard F (2002) Kristianesite a new calcium-scandium-tin sorosilicate from granite pegmatite from Tørdal, Telemark, Norway. Mineral Petrol 75:89–99

    Article  Google Scholar 

  • Romeiro JCP, Pedrosa-Soares AC (2005) Controle do minério de espodumênio em pegmatitos da Mina da Cachoeira, Araçuai, MG. Geonomos 13:75–85

    Google Scholar 

  • Rossovskiy LN, Konovalenko SI (1977) Corundum Plagioclasite of the Southwestern Pamirs. Doklady Academie Science. U.S.S.R., Earth Science Section 235:145–147

    Google Scholar 

  • Satish-Kumar M, Santosh MA (1998) Petrological and fluid inclusion study of calc-silicate–charnockite associations from southern Kerala, India: implications for CO2 influx. Geol Mag 135:27–45

    Article  Google Scholar 

  • Schmid H, Weinelt W (1978) Lagerstätten in Bayern. Geologica Bavarica 77:1–160

    Google Scholar 

  • Schneiderhöhn H (1961) Die pegmatite [The pegmatites]. Gustav Fischer Verlag, Stuttgart, 720 pp. (in German)

    Google Scholar 

  • Schneiderhöhn H (1962) Erzlagerstätten [Ore deposits]. Gustav Fischer Verlag, Stuttgart, 371 pp. (in German)

    Google Scholar 

  • Scholz A (1925) Untersuchungen über Mineralführung und Mineralgenese der bayerischen Pegmatite, Bericht für das Jahr 1924 des Naturwissenschaftlichen Vereins Regensburg e.V. Regensburg 17:1–46

    Google Scholar 

  • Selway JB, Breaks FW, Tindle AG (2006) A review of rare-element (Li-Cs-Ta) pegmatite exploration techniques for the Superior province, Canada, and large worldwide tantalum deposits. Explor Min Geol 14:1–30

    Article  Google Scholar 

  • Shannon JR, Walker BM, Carten RB, Geraghty EP (1982) Unidirectional solidification textures and their significance in determining relative ages of intrusion at the Henderson Mine, Colorado. Geology 10:293–297

    Article  Google Scholar 

  • Stettner G (1960) Erläuterung zur geologischen Karte von Bayern 1.25000, Sheet No. 5836, Münchberg. Geological Survey of Bavaria, München, 163 pp

    Google Scholar 

  • Stettner G (1964) Erläuterung zur geologischen Karte von Bayern 1.25000, Sheet No. 5837, Weissenstadt. Geological Survey of Bavaria, München, 194 pp

    Google Scholar 

  • Strunz H (1961) Epitaxie von Uraninit auf Columbit. Aufschluss 12:81–84

    Google Scholar 

  • Strunz H, Forster A, Tennyson C (1975) Die Pegmatite der nördlichen Oberpfalz. Aufschluss 26:117–189

    Google Scholar 

  • Swaziland Natural Trust Commission (2007) Cultural resources – Malolotja archaeology. Lion Cavern

    Google Scholar 

  • Teuscher EO, Weinelt W (1972) Die Metallogenese im Raum Spessart – Fichtelgebirge-Oberpfälzer Wald-Bayerischer Wald. Geologica Bavarica 65:5–73

    Google Scholar 

  • Tkachev AV (2011) Evolution of metallogeny of granitic pegmatites associated with orogens throughout geologic time. In: Sial AN, Bettencourt JS, De Campos CP (eds) Granite-related ore deposits, Geological Society special publication, 350. Geological Society, London, pp 7–23

    Google Scholar 

  • Tschernich RW (1992) Zeolites of the world. Geoscience Press, Phoenix, 563 pp

    Google Scholar 

  • Tuyet NN, Minh TNT, Ngoc AV, Van NN (2006) Gem minerals in rare metal Pegmatite from Lucyen mining area (North Vietnam). Asia Oceania Geosciences Society, Singapore AOGS 2006, 905

    Google Scholar 

  • Uebel P-J (1975) Platznahme und Genese des Pegmatit von Hagendorf-Süd. Neues Jb Mineral Monat 1975:318–322

    Google Scholar 

  • Van der Pluijm BA, Marshak S (2004) Earth structure – an introduction to structural geology and tectonics, 2nd edn. W. W. Norton, New York. 656pp

    Google Scholar 

  • von Gümbel CW (1868) Geognostische Beschreibung des ostbayerischen Grenzgebirges oder des bayerischen und Oberpfälzer Waldgebirges. Justus Perthes, Gotha/Leipzig, 968 pp

    Google Scholar 

  • von Gümbel CW (1879) Geognostische Beschreibung des Fichtelgebirges mit dem Frankenwald und westlichen Vorlande. Perthes, Gotha/Leipzig, 698 pp

    Google Scholar 

  • Walton L (2004) Exploration criteria for colored gemstone deposits in the Yukon: Yukon Geological Survey, Open File 2004-10, 184 pp

    Google Scholar 

  • Warin R, Jacques B (2003) Le beryl-Cs d’Ambatovita, Madagascar. Morphologie et aspects macroscopiques. Le Règne Mineral 52:36–41

    Google Scholar 

  • Weber B (1978a) Mineralien aus den Metapegmatiten Wilma und Gertrude bei Obersdorf und Menzlhof in der Oberpfalz. Aufschluss 29:325–329

    Google Scholar 

  • Weber K (1978b) Das Bewegungsbild im Rhenoherzynikum – Abbild einer varistischen Subfluenz. Z Dtsch Geol Ges 129:249–281

    Google Scholar 

  • Wise MA (1999) Characterization and classification of NYF- type pegmatites. Can Mineral 37:802–803

    Google Scholar 

  • Zagorsky VY, Makagon VM, Shmakin BM (1999) The systematics of granitic pegmatites. Can Mineral 37:800–802

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dill, H.G. (2015). Pegmatitic Rocks and Economic Geology. In: The Hagendorf-Pleystein Province: the Center of Pegmatites in an Ensialic Orogen. Modern Approaches in Solid Earth Sciences, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-18806-5_1

Download citation

Publish with us

Policies and ethics