Pegmatitic Rocks and Economic Geology

  • Harald G. Dill
Part of the Modern Approaches in Solid Earth Sciences book series (MASE, volume 15)


Three minerals contribute to the built-up of Earth’s crust by almost ¾ and predominate in the group of industrial minerals. Feldspar is the top scorer with 56 vol.%; quartz is second most in abundance and accounts for 12 vol.% while phyllosilicates of the mica group are fifth among the top 10 with 4 vol.%. They are the major rock-forming constituents of the granite suite and the pegmatitic and aplitic rocks. Pegmatitic rocks similar in the gross mineralogical composition to granites but conspicuously different in size and quality of their minerals can deliver much better to the requirements of consumers from the industry using feldspar, quartz and mica as a raw material. In addition, these rocks may contain specific elements present in quantity so that they attain even ore grade as it is the case with Nb, Ta, Li, Mo, Sn, W, Be, Sc, Cs, Rb, REE, Y and U or they are targeted upon for their gemstones such as B, Be and Li. Although operated mainly for their quartz and feldspar contents, some of these rocks in Central Europe are also strongly enriched in rare elements such as Li, Nb, Ta, Be, REE and U and therefore have not only attracted the attention of mining engineers interested in industrial minerals but also encouraged mineralogists to investigate the wealth of minerals, with much success. The Hagendorf-Pleystein mining district consists of several pegmatites and aplites, including the largest pegmatite stock in Central Europe at Hagendorf-South, with more than 200 minerals. In the “Chessboard classification scheme of mineral deposits” (Dill, Earth Sci Rev 100:1–420, 2010) the outstanding economic importance of pegmatitic and aplitic rocks, particularly for future technologies is on a world-wide scale in context with other mineral deposits hosted by magmatic and metamorphic rocks. Several attempts have been made to squeeze pegmatites into classification schemes, yet with different success. A classification scheme should cater for the extractive and genetic part of economic geology alike. A new classification scheme, which is based on the Chemical composition, the Mineral assemblage and the Structural geology of pegmatitic rocks and for which the acronym CMS has been coined is put forward as “CMS classification scheme of pegmatitic and aplitic rocks” (Dill, Ore Geol Rev 69, 2015). It can be used in a short and long version and has two major columns the ore body and ore composition, it can be correlated with the “Chessboard classification scheme of mineral deposits”, and as such open for amendments and applicable also in a digital way. The extractive geology of various types of pegmatitic and rocks is depicted from the past until today.


Classification Scheme Mining Operation Mining District Bohemian Massif Opencast Mining 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adusumilli MS, Castro C, Bhaskara Rao A (1994) Blue and green tourmalines from Greogrio pegmatite, Brazil. Int Mineral Assoc Meet Abstr 16:3–4Google Scholar
  2. Bariand P, Poullen JF (1978) The Pegmatites of Laghman, Nuristan, Afghanistan. Miner Rec 301–308Google Scholar
  3. Bates RL, Jackson JA (1987) Glossary of geology. American Geological Institute, Alexandria, 788 ppGoogle Scholar
  4. Bauberger W (1957) Über die “Albitpegmatite” der Münchberger Gneissmasse und ihre Nebengesteine. Geologica Bavarica 36:5–77Google Scholar
  5. Bayerisches Oberbergamt (1924) Die nutzbaren Mineralien, Gesteine und Erden Bayerns. R.Oldenburg, Piloty & Loehle, München, 210 ppGoogle Scholar
  6. Bernhard F, Walter F, Ettinger K, Taucher J, Merreiter K (1998) Pretulite, Sc(PO4), a new scandium mineral from Styrian and Lower Austrian lazulite occurrences, Austria. Am Mineral 83:625–630Google Scholar
  7. Bjørlykke H (1937) Mineral parageneses of some granite pegmatites near Kragerø, Southern Norway. Nor Geol Tidsskr 17:1–16Google Scholar
  8. Borisova AY, Thomas R, Salvi S, Candaudap F, Lanzanova A, Chmeleff J (2012) Tin and associated metal and metalloid geochemistry by femtosecond LA-ICP-QMS microanalysis of pegmatite–leucogranite melt and fluid inclusions: new evidence for melt–melt–fluid immiscibility. Mineral Mag 76:91–113CrossRefGoogle Scholar
  9. Breiter K, Siebel W (1995) Granitoids in the Rozvadov pluton. Geol Rundsch 84:506–519CrossRefGoogle Scholar
  10. Cameron EN, Jahns RH, McNair AH, Page LR (1949) Internal structure of pegmatites. Econ Geol Monogr 2:1–115Google Scholar
  11. Černý P (1972) The Tanco pegmatite at Bernic Lake Manitoba W, Eucryptite. Can Mineral 11:708–713Google Scholar
  12. Černý P (1989) Exploration strategy and methods for pegmatite deposits of tantalum. In: Möller P, Cerný P, Saupé F (eds) Lanthanides, tantalum and niobium. Springer, Heidelberg, pp 274–310Google Scholar
  13. Černý P (1991) Rare-element granitic pegmatites: Part I: Anatomy and internal evolution of pegmatite deposits. Part II: Regional and global environments and petrogenesis. Geosci Can 18:49–81Google Scholar
  14. Černý P, Ercit TS (2005) The classification of granitic pegmatites revisited. Can Mineral 43:2005–2026CrossRefGoogle Scholar
  15. Černý P, Ferguson RB (1972) The Tanco pegmatite at Bernic Lake Manitoba. VI, Petalite and spodumene relations. Can Mineral 11:690–707Google Scholar
  16. Černý P, Simpson FM (1977) The Tanco pegmatite at Bernic Lake Manitoba: the Beryl. Can Mineral 15:489–499Google Scholar
  17. Černý P, Simpson FM (1978) The Tanco pegmatite at Bernic Lake Manitoba X, Pollucite. Can Mineral 16:325–333Google Scholar
  18. Čech F, Mísa Z, Povondra P (1971) A green lead-containing orthoclase. Miner Pet 15:213–231Google Scholar
  19. Davis H, Reynolds SJ (1996) The structural geology of rocks and regions, 2nd edn. Wiley, New YorkGoogle Scholar
  20. Delaney PJV (1992) Gemstones of Brazil: geology and occurrences, Revista Escola de Minas, Praca Tiradentes 20. Editora REM-Revista Escola de Minas, Ouro Preto, 125 ppGoogle Scholar
  21. Dill HG (1979) Der Feldspat-Bergbau in der Münchberger Gneismasse. Bergbau 30:301–304Google Scholar
  22. Dill HG (2007) A review of mineral resources in Malawi: with special reference to aluminium variation in mineral deposits. J Afr Earth Sci 47:153–173CrossRefGoogle Scholar
  23. Dill HG (2010) The “chessboard” classification scheme of mineral deposits: mineralogy and geology from aluminum to zirconium. Earth-Sci Rev 100:1–420CrossRefGoogle Scholar
  24. Dill HG, Lohmann D (2011) Die Zeit der billigen Rohstoffe ist vorbei – Prof. Harald G. Dill im Interview. In: Lohmann D, und Podbregar N (Editoren und Autoren) Im Fokus: Bodenschätze- Auf der Suche nach Rohstoffen. Springer, Heidelberg/Dordrecht/London/New York, pp 29–39Google Scholar
  25. Dill HG, Röhling S (2007) Bodenschätze der Bundesrepublik Deutschland 1: 1 000 000 (unter Mitarbeit der Geologischen Dienste der Bundesländer). Bundesanstalt für Geowissenschaften und Rohstoffe, HannoverGoogle Scholar
  26. Dill HG, Weber B (2011) Die Oberpfälzer Flussspat-Anthologie – “Bunte Steine” prägen die Region und ihre Menschen um den Wölsenberg. Verlag Druckkultur Späthling, Weissenstadt, 311 ppGoogle Scholar
  27. Dill HG, Weber B, Fuessl M, Melcher F (2006a) The origin of the hydrous scandium phosphate kolbeckite from the Hagendorf – Pleystein pegmatite province, Germany. Mineral Mag 70:281–290CrossRefGoogle Scholar
  28. Dill HG, Melcher F, Fuessl M, Weber B (2006b) Accessory minerals in cassiterite: a tool for provenance and environmental analyses of colluvial-fluvial placer deposits (NE Bavaria, Germany). Sediment Geol 191:171–189CrossRefGoogle Scholar
  29. Dill HG, Khishigsuren S, Majigsuren Y, Myagmarsuren S, Bulgamaa J, Hongor O (2006c) A review of industrial minerals of Mongolia: the impact of geological and geographical factors on their formation and use. Int Geol Rev 48:129–170CrossRefGoogle Scholar
  30. Dill HG, Sachsenhofer RF, Grecula P, Sasvári T, Palinkaš LA, Borojević-Šoštarić S, Strmić-Palinkaš S, Prochaska W, Garuti G, Zaccarini F, Arbouille D, Schulz H-M (2008a) Fossil fuels, ore – and industrial minerals. In: McCann T (ed) Geology of Central Europe, Special publication. Geological Society of London, London, pp 1341–1449Google Scholar
  31. Dill HG, Sachsenhofer RF, Grecula P, Sasvári T, Palinkaš LA, Borojević-Šoštarić S, Strmić-Palinkaš S, Prochaska W, Garuti G, Zaccarini F, Arbouille D, Schulz H-M, Locmelis B (2008b) The origin of mineral and energy resources of Central Europe (map 1: 2500000). Geological Society of London, London (on CD ROM)Google Scholar
  32. Dill HG, Melcher F, Gerdes A, Weber B (2008c) The origin and zoning of hypogene and supergene Fe-Mn-Mg-Sc-U-REE-Zn phosphate mineralization from the newly discovered Trutzhofmühle aplite (Hagendorf pegmatite province, Germany). Can Mineral 46:1131–1157CrossRefGoogle Scholar
  33. DuBois C, Walsh J (1970) Minerals of Kenya. Geol Surv Kenya Bull 11:1–82Google Scholar
  34. Ecrit TS (2005) REE-enriched granitic pegmatites. In: Linnen RL, Sampson IM (eds) Rare-element geochemistry and mineral deposits. Geological Association of Canada, St. John’s, pp 175–199Google Scholar
  35. Emmert U, Stettner G (1968) Erläuterung zur geologischen Karte von Bayern 1.25000, Sheet No. 5737, Schwarzenbach a.d. sächsischen Saale, Geological Survey of Bavaria, München, 236 ppGoogle Scholar
  36. Emmert U, Horstig von G, Weinelt Wi (1960) Erläuterung zur geologischen Karte von Bayern 1.25000, Sheet No. 5835, Stadtsteinach, Geological Survey of Bavaria, München, 279 ppGoogle Scholar
  37. Fersman A (1930) O geokhimicheskoi geneticheskoi klassifikatsii granitnykh pegmatitov (A geochemical genetic classification of pegmatites). Monograph Akademiia Nauk SSSR. (in Russian)Google Scholar
  38. Forster A (1965) Erläuterungen zur Geologischen Karte von Bayern 1:25000 Blatt Vohenstrauss/Frankenreuth. GLA, München, 174 ppGoogle Scholar
  39. Forster A, Kummer R (1974) The pegmatites in the area of Pleystein-Hagendorf/ North Eastern Bavaria. Fortschritte Mineralogie 52:89–99Google Scholar
  40. Forster A, Strunz H, Tennsyson C (1967) Die Pegmatite des Oberpfälzer Waldes, insbesondere der Pegmatit von Hagendorf-Süd. Aufschluss Spec Pub 16:137–198Google Scholar
  41. Fossen H (2010) Structural geology. Cambridge University Press, Cambridge, 480 ppCrossRefGoogle Scholar
  42. Fry N (1991) The field description of metamorphic rocks, Geological Society of London handbook series, Book 14. Wiley, London, 112 ppGoogle Scholar
  43. Galliski MA, Lira R, Dorais MJ (2004) Low-pressure differentiation of melanephelinitic magma and the origin of ijolite pegmatites at La Madera, Córdoba, Argentina. Can Mineral 42:1799–1823CrossRefGoogle Scholar
  44. Ginsburg AI, Rodionov GG (1960) On the depths of the granitic pegmatite formation. Geologiya Rudnykh Mestorozhdenyi, Izd. Nauka, Moskva l:45–54Google Scholar
  45. Ginsburg AI, Timofeyev IN, Feldman LG (1979) Principles of geology of the granitic pegmatites. Nedra, Moscow, 296 pp. (in Russian)Google Scholar
  46. Göd R (1978) Vorläufige Mitteilung über einen Spodumen-Holmquistit führenden Pegmatit aus Kärnten. Anzeiger der Akademie der Wissenschaften, mathematisch-naturwissenschaftliche Klasse 115:161–165Google Scholar
  47. Göd R (1989) The spodumene deposit at “Weinebene” Koralpe, Austria. Mineral Deposita 24:270–278CrossRefGoogle Scholar
  48. Grew ES (1988) Kornerupine at the Sar-e-Sang, Afghanistan, whiteschist locality: implications for tourmaline-kornerupine distribution in metamorphic rocks. Am Mineral 73:345–357Google Scholar
  49. Harben PW, Kužvart M (1996) Industrial minerals: a global geology. London Industrial Minerals Information Ltd., London, 462 ppGoogle Scholar
  50. Hauzenberger CA, Häger T, Sutthirat C, Bojar A-V, Kienzel N (2005) Geochemical characterization of corundum from different gem deposits: a stable isotope and trace element study. Gem-materials and modern analytical methods. GEM.MAT.MAM, Hanoi, 3 rd international workshop, pp 55–62Google Scholar
  51. Hughes RW (1990) Corundum. Butterworth-Heinmann, London, 314 ppGoogle Scholar
  52. Jahns RH, Burnham CW (1969) Experimental studies of pegmatite genesis: I: a model for the derivation and crystallization of granitic pegmatites. Econ Geol 64:843–864CrossRefGoogle Scholar
  53. Jaszczak A, Dimovski S, Hackney SA, Robinson GW, Bosio P, Gogotsi Y (2007) Micro- and nano-scale graphite cones and tubes from Hackman Valley, Kola Peninsula, Russia. Can Mineral 45:379–389CrossRefGoogle Scholar
  54. Keck E (1990) Hagendorf-Sued-Ein kurzer historischer Überblick. Aufschluss 41:54–66Google Scholar
  55. Kievlenko EY (2003) Geology of gems. Ocean Publications Ltd., Littleton. 432. ppGoogle Scholar
  56. Kippenberger C, Krauss U, Kruzona M, Schmidt H, Thormann A, Priem J, Wettig E (1988) Lithium. Untersuchungen über Angebot und Nachfrage mineralischer Rohstoffe 21:1–212Google Scholar
  57. Kopp R (1987) Kurze Betriebsschronik der Feldspatgrube Gertrud by Weiden Opf. Aufschluss 37:75–76Google Scholar
  58. Landes KK (1933) Origin and classification of pegmatites. Am Mineral 18:95–103Google Scholar
  59. Laurs BM, Simmons WB, Rossman GR, Quinn EP, McClure SF, Peretti A, Armbruster T, Hawthorne FC, Falster AU, Günther D, Cooper MA, Grobéty B (2003) Pezzottaite from Ambatovita, Madagascar: a new gem mineral. Gems Gemol 2003:284–301CrossRefGoogle Scholar
  60. Linhardt E (2000) Der Beryllpegmatit der Feldspatgrube Maier, Püllersreuth. Lapis 25:13–23Google Scholar
  61. Linnen RL, Cuney M (2005) Granite-related rare-element deposits and experimental constraints on Ta-Nb-W-Sn-Zr-Hf mineralization. In: Linnen RL, Samson IM (eds) Rare element geochemistry and mineral deposits, vol 17, Geological Association of Canada short course notes. Geological Association of Canada, St. John’s, pp 45–68Google Scholar
  62. Lisle RJ, Brabham P, Barnes JW (2011) Basic geological mapping (Geological Field Guide) paperback, 5th edn. Wiley, 230 ppGoogle Scholar
  63. London D (2008) Pegmatites, Canadian mineralogist, special publication, 10. Mineralogical Association of Canada, Ottawa, pp 1–347Google Scholar
  64. Lorenz W (1991) Criteria for the assessment of non-metallic mineral deposits. Geol Jahrb A 27:299–326Google Scholar
  65. Lorenz W (1995) Planvolle Ressourcennutzung von Industriemineralien, Steinen und Erden als Teil des Umweltschutzes. Z Angew Geol 41:98–105Google Scholar
  66. Markl G, Schumacher C (1997) Beryl stability in local hydrothermal and chemical environments in a mineralized granite. Am Mineral 82:194–202Google Scholar
  67. Mücke A (1987) Sekundäre Phosphatmineralien (Perloffit, Brasilianit, Mineralien der Kingsmountit-Gruppe) sowie Brochantit und die Zwieselit-Muschketoffit-Stilpnomelan-Pyrosmalith-Paragenese der 115-m-Sohle des Hagendorfer Pegmatits. Aufschluss 38:5–28Google Scholar
  68. Mücke A (1988) Lehnerit Mn[UO2|PO4]2 8H2O, ein neues Mineral aus dem Pegmatit von Hagendorf/Oberpfalz. Aufschluss 39:209–217Google Scholar
  69. Mücke A (2000) Die Erzmineralien und deren Paragenesen im Pegmatit von Hagendorf-Süd, Oberpfalz. Aufschluss 51:11–24Google Scholar
  70. Mücke A, Keck E, Haase J (1990) Die genetische Entwicklung des Pegmatits von Hagendorf-Süd/Oberpfalz. Aufschluss 41:33–51Google Scholar
  71. Müllbauer F (1925) Die Phosphatpegmatite i. Bayern (Neue Beoabachtungen.). Zeitschrift für Kristallographie, Zeitschrift f Kristallographie 64:319–336Google Scholar
  72. Niggli P (1920) Die leichtflüchtigen Bestandteile im Magma. Preisschriften der Fürstlich Jablonowskischen Gesellschaft. B.G. Teubner, Leipzig, 272 ppGoogle Scholar
  73. Novák M, Černý P (2001) Distinctive compositional trends in columbite-tantalite from two segments of the lepidolite pegmatite at Rožná, western Moravia, Czech Republic. J Czech Geol Soc 46:1–8Google Scholar
  74. Novák JK, Pivec E, Štemprok M (1996) Hydrated iron phosphates in muscovite-albite granite from Waidhaus (Oberpfalz, Germany). J Czech Geol Soc 41:201–207Google Scholar
  75. O’Donoghue M (2006) Gems their sources, descriptions and identification. Elsevier, Amsterdam, 873 ppGoogle Scholar
  76. Partington GA, Mc Naughton NJ, Williams IS (1995) A review of the geology, mineralization, and geochronology of the Greenbushes Pegmatite, Western Australia. Econ Geol 90:616–635CrossRefGoogle Scholar
  77. Petersen JS (1978) Structure of the larvikite – lardalite complex, Oslo-region, Norway, and its evolution international. J Earth Sci 67:330–342Google Scholar
  78. Pezzotta F (2001) Madagascar, a mineral and gemstone paradise. Ed, Extralapis English 1. Lapis International LLC, East Hampton, 100 ppGoogle Scholar
  79. Pollner R, Schmidt C, Fischer G, Kuhn K, Poschl E, Dalla Lana IG, Fiedorow R, Gaworski B, Song X, Arnaud NO, Kelley SP (1997) Argon behaviour in gem-quality orthoclase from Madagascar: experiments and some consequences for 40Ar/39Ar geochronology. Geochim Cosmochim Acta 61:3227–3255CrossRefGoogle Scholar
  80. Popov VA, Popova VI (2006) Ilmeny mountains. Mineralogical Almanac 9, 156 ppGoogle Scholar
  81. Prentice JE (1990) Geology of construction materials. Chapman and Hall, London/New York/Tokyo/Melbourne/Madras, 201 ppGoogle Scholar
  82. Raade G, Ferraris G, Gula A, Ivaldi G, Bernhard F (2002) Kristianesite a new calcium-scandium-tin sorosilicate from granite pegmatite from Tørdal, Telemark, Norway. Mineral Petrol 75:89–99CrossRefGoogle Scholar
  83. Romeiro JCP, Pedrosa-Soares AC (2005) Controle do minério de espodumênio em pegmatitos da Mina da Cachoeira, Araçuai, MG. Geonomos 13:75–85Google Scholar
  84. Rossovskiy LN, Konovalenko SI (1977) Corundum Plagioclasite of the Southwestern Pamirs. Doklady Academie Science. U.S.S.R., Earth Science Section 235:145–147Google Scholar
  85. Satish-Kumar M, Santosh MA (1998) Petrological and fluid inclusion study of calc-silicate–charnockite associations from southern Kerala, India: implications for CO2 influx. Geol Mag 135:27–45CrossRefGoogle Scholar
  86. Schmid H, Weinelt W (1978) Lagerstätten in Bayern. Geologica Bavarica 77:1–160Google Scholar
  87. Schneiderhöhn H (1961) Die pegmatite [The pegmatites]. Gustav Fischer Verlag, Stuttgart, 720 pp. (in German)Google Scholar
  88. Schneiderhöhn H (1962) Erzlagerstätten [Ore deposits]. Gustav Fischer Verlag, Stuttgart, 371 pp. (in German)Google Scholar
  89. Scholz A (1925) Untersuchungen über Mineralführung und Mineralgenese der bayerischen Pegmatite, Bericht für das Jahr 1924 des Naturwissenschaftlichen Vereins Regensburg e.V. Regensburg 17:1–46Google Scholar
  90. Selway JB, Breaks FW, Tindle AG (2006) A review of rare-element (Li-Cs-Ta) pegmatite exploration techniques for the Superior province, Canada, and large worldwide tantalum deposits. Explor Min Geol 14:1–30CrossRefGoogle Scholar
  91. Shannon JR, Walker BM, Carten RB, Geraghty EP (1982) Unidirectional solidification textures and their significance in determining relative ages of intrusion at the Henderson Mine, Colorado. Geology 10:293–297CrossRefGoogle Scholar
  92. Stettner G (1960) Erläuterung zur geologischen Karte von Bayern 1.25000, Sheet No. 5836, Münchberg. Geological Survey of Bavaria, München, 163 ppGoogle Scholar
  93. Stettner G (1964) Erläuterung zur geologischen Karte von Bayern 1.25000, Sheet No. 5837, Weissenstadt. Geological Survey of Bavaria, München, 194 ppGoogle Scholar
  94. Strunz H (1961) Epitaxie von Uraninit auf Columbit. Aufschluss 12:81–84Google Scholar
  95. Strunz H, Forster A, Tennyson C (1975) Die Pegmatite der nördlichen Oberpfalz. Aufschluss 26:117–189Google Scholar
  96. Swaziland Natural Trust Commission (2007) Cultural resources – Malolotja archaeology. Lion CavernGoogle Scholar
  97. Teuscher EO, Weinelt W (1972) Die Metallogenese im Raum Spessart – Fichtelgebirge-Oberpfälzer Wald-Bayerischer Wald. Geologica Bavarica 65:5–73Google Scholar
  98. Tkachev AV (2011) Evolution of metallogeny of granitic pegmatites associated with orogens throughout geologic time. In: Sial AN, Bettencourt JS, De Campos CP (eds) Granite-related ore deposits, Geological Society special publication, 350. Geological Society, London, pp 7–23Google Scholar
  99. Tschernich RW (1992) Zeolites of the world. Geoscience Press, Phoenix, 563 ppGoogle Scholar
  100. Tuyet NN, Minh TNT, Ngoc AV, Van NN (2006) Gem minerals in rare metal Pegmatite from Lucyen mining area (North Vietnam). Asia Oceania Geosciences Society, Singapore AOGS 2006, 905Google Scholar
  101. Uebel P-J (1975) Platznahme und Genese des Pegmatit von Hagendorf-Süd. Neues Jb Mineral Monat 1975:318–322Google Scholar
  102. Van der Pluijm BA, Marshak S (2004) Earth structure – an introduction to structural geology and tectonics, 2nd edn. W. W. Norton, New York. 656ppGoogle Scholar
  103. von Gümbel CW (1868) Geognostische Beschreibung des ostbayerischen Grenzgebirges oder des bayerischen und Oberpfälzer Waldgebirges. Justus Perthes, Gotha/Leipzig, 968 ppGoogle Scholar
  104. von Gümbel CW (1879) Geognostische Beschreibung des Fichtelgebirges mit dem Frankenwald und westlichen Vorlande. Perthes, Gotha/Leipzig, 698 ppGoogle Scholar
  105. Walton L (2004) Exploration criteria for colored gemstone deposits in the Yukon: Yukon Geological Survey, Open File 2004-10, 184 ppGoogle Scholar
  106. Warin R, Jacques B (2003) Le beryl-Cs d’Ambatovita, Madagascar. Morphologie et aspects macroscopiques. Le Règne Mineral 52:36–41Google Scholar
  107. Weber B (1978a) Mineralien aus den Metapegmatiten Wilma und Gertrude bei Obersdorf und Menzlhof in der Oberpfalz. Aufschluss 29:325–329Google Scholar
  108. Weber K (1978b) Das Bewegungsbild im Rhenoherzynikum – Abbild einer varistischen Subfluenz. Z Dtsch Geol Ges 129:249–281Google Scholar
  109. Wise MA (1999) Characterization and classification of NYF- type pegmatites. Can Mineral 37:802–803Google Scholar
  110. Zagorsky VY, Makagon VM, Shmakin BM (1999) The systematics of granitic pegmatites. Can Mineral 37:800–802Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Harald G. Dill
    • 1
  1. 1.Gottfried-Wilhelm-Leibniz UniversityHannoverGermany

Personalised recommendations