Skip to main content

Spatiotemporal Variability of Hydrological Variables of Dapo Watershed, Upper Blue Nile Basin, Ethiopia

  • Chapter
  • First Online:
Landscape Dynamics, Soils and Hydrological Processes in Varied Climates

Part of the book series: Springer Geography ((SPRINGERGEOGR))

Abstract

This chapter discusses the results of an experimental hydrological study in Dapo watershed located at the head of the upper Blue Nile Basin in Ethiopia. Detailed spatial measurements of rainfall and soil moisture were conducted at five rain gauge stations and fifteen soil moisture stations of varying depths. It was observed that there is relatively higher consistency of rainfall data in four manual rain gauge stations. Spatial and temporal distribution of soil moisture (%) shows uniform pattern of distribution at different sample depths and most of the stations showed high degree of correlation between the station values. However, unlike the soil moisture, the groundwater level at three automatic monitoring stations showed relatively differing pattern of distribution as indicated by the low degree of correlation among station values. Measurements also showed that the baseflow contribution is greater than the direct runoff contribution at the outlet of the watershed indicating streamflow generation in the watershed dominated by subsurface flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abtew W, Melesse AM (2014a) Nile River basin hydrology. In: Melesse AM, Abtew W, Setegn S (eds) Nile River basin: ecohydrological challenges, climate change and hydropolitics, pp 7–22

    Google Scholar 

  • Abtew W, Melesse AM (2014b) Climate teleconnections and water management. In: Nile River basin. Springer International Publishing, Switzerland, pp 685–705

    Google Scholar 

  • Abtew W, Melesse AM (2014c) Transboundary rivers and the Nile. In: Nile River basin. Springer International Publishing, Switzerland, pp. 565-579

    Google Scholar 

  • Abtew W, Melesse AM, Desalegn T (2009a) Spatial, inter and intra-annual variability of the Blue Nile River basin Rainfall. Hydrol Process 23(21):3075–3082

    Article  Google Scholar 

  • Abtew W, Melesse AM, Desalegn T (2009b) El Niño southern oscillation link to the Blue Nile River basin hydrology. Hydrol Process Spec Issue Nile Hydrol 23(26):3653–3660

    Google Scholar 

  • Beven K (1989) Interflow. In: Morel-Seytoux HJ (ed) Unsaturated flow in hydrologic modeling—theory and practice, NATO ASI series C, vol 275. Kluwer, pp 191–219

    Google Scholar 

  • Blume T, Zehe E, Bronstert A (2007) Use of soil moisture dynamics and patterns for the investigation of runoff generation processes with emphasis on preferential flow. Hydrol Earth Syst Sci Discuss 4:2587–2624

    Article  Google Scholar 

  • Chebud YA, Melesse AM (2009a) Numerical modeling of the groundwater flow system of the Gumera Sub-Basin in Lake Tana Basin, Ethiopia. Hydrol Process, Spec Issue Nile Hydrol 23(26):3694–3704

    Google Scholar 

  • Chebud YA, Melesse AM (2009b) Modeling lake stage and water balance of Lake Tana, Ethiopia. Hydrol Process 23(25):3534–3544

    Google Scholar 

  • Chebud Y, Melesse AM (2013) Stage level, volume, and time-frequency change information content of Lake Tana using stochastic approaches. Hydrol Process 27(10):1475–1483. doi: 10.1002/hyp.9291

    Google Scholar 

  • Dessu SB, Melesse AM (2012) Modeling the rainfall-runoff process of the Mara River basin using SWAT. Hydrol Process 26(26):4038–4049

    Article  Google Scholar 

  • Dessu SB, Melesse AM (2013) Impact and uncertainties of climate change on the hydrology of the Mara River basin. Hydrol Process 27(20):2973–2986

    Google Scholar 

  • Dessu SB, Melesse AM, Bhat M, McClain M (2014) Assessment of water resources availability and demand in the Mara River basin. CATENA 115:104–114

    Article  Google Scholar 

  • Dubreuil PL (1985) Review of field observations of runoff generation in the tropics. J Hydrol 80:237–264

    Article  Google Scholar 

  • Frankenberger JR, Brooks ES, Walter MT, Walter MF, Steenhuis TS (1999) A GIS-based variable source area hydrology model. Hydrol Process 13:805–822

    Article  Google Scholar 

  • Gelfan AN (2005) Dynamic-stochastic models of river runoff generation. Hydrological systems modeling—vol II. Water Problems Institute of Russian Academy of Sciences, Moscow

    Google Scholar 

  • Getachew HE, Melesse AM (2012) Impact of land use/land cover change on the hydrology of Angereb Watershed, Ethiopia. Int J Water Sci 1, 4:1–7. doi: 10.5772/56266

  • Jochen W, Uhlenbrook S, Lorentz S, Christian L (2008) Identification of runoff generation processes using combined hydrometric, tracer and geophysical methods in a headwater catchment in South Africa. Hydrol Sci–J–des Sci Hydrol 53(1):65–80

    Google Scholar 

  • Latron AJ, Gallart BF (2008) Runoff generation processes in a small Mediterranean research catchment. J Hydrol 358:206–220

    Article  Google Scholar 

  • Mazvimavi D (2003) Estimation of flow characteristics of ungauged catchments, case study in Zimbabwe. PhD thesis, Wageningen University, Wageningen

    Google Scholar 

  • Melesse AM (2011) Nile River basin: hydrology, climate and water use. Springer Science & Business Media, Berlin

    Book  Google Scholar 

  • Melesse AM, Loukas Athanasios G, Senay Gabriel, Yitayew Muluneh (2009a) Climate change, land-cover dynamics and ecohydrology of the Nile River basin. Hydrol Process, Spec Issue Nile Hydrology 23(26):3651–3652

    Google Scholar 

  • Melesse A, Abtew W, Desalegne T, Wang X (2009b) Low and high flow analysis and wavelet application for characterization of the Blue Nile River System. Hydrol Process 24(3):241–252

    Google Scholar 

  • Melesse A, Abtew W, Setegn S, Dessalegne T (2011) Hydrological variability and climate of the Upper Blue Nile River basin. In: Melesse A (ed) Nile River basin: hydrology, climate and water use, Chap. 1. Springer Science Publisher, Berlin, pp 3–37. doi: 10.1007/978-94-007-0689-7_1

    Google Scholar 

  • Melesse A, Abtew W, Setegn SG (2014) Nile River basin: ecohydrological challenges, climate change and hydropolitics. Springer Science & Business Media, Berlin

    Book  Google Scholar 

  • Ridolfi L, D’Odoricoc P, Porporato A, Rodriguez II (2003) Stochastic soil moisture dynamics along a hillslope. J Hydrol 272:264–275

    Article  Google Scholar 

  • Setegn SG, Srinivasan R, Dargahil B, Melesse AM (2009a) Spatial delineation of soil erosion prone areas: application of SWAT and MCE approaches in the Lake Tana Basin, Ethiopia. Hydrol Process 23(26):3738–3750

    Google Scholar 

  • Setegn SG, Srinivasan R, Melesse AM, Dargahi B (2009b) SWAT model application and prediction uncertainty analysis in the Lake Tana Basin, Ethiopia. Hydrol Process 24(3):357–367

    Google Scholar 

  • Setegn SG, Dargahi B, Srinivasan R, Melesse AM (2010) Modelling of sediment yield from Anjeni Gauged watershed, Ethiopia using SWAT. J Amer Water Resour Assoc 46(3):514–526

    CAS  Google Scholar 

  • Shumin H, Yonghui Y, Tong F, Dengpan X, Juana PM (2011) Precipitation-runoff processes in Shimen hillslope micro-catchment of Taihang Mountain, north China. Hydrol Process 26(9):1332–1341

    Google Scholar 

  • Wendroth O, Pohla W, Koszinski S, Rogasik H, Ritsema CJ, Nielsen DR (1999) Spatial-temporal patterns and covariance structures of soil water status in two northeast-German field sites. J Hydrol 215:38–58

    Article  Google Scholar 

  • Yitayew M, Melesse AM (2011) Critical water resources management issues in Nile River basin. In: Melesse AM (ed) Nile River basin: hydrology, climate and water use, Chap. 20. Springer Science Publisher, Berlin, pp 401–416. doi: 10.1007/978-94-007-0689-7_20

    Google Scholar 

  • Zemadim B, Matthew MC, Gerba L (2010) Hydrology reconnaissance. Report CPWF Nile Project 2. International Water Management Institute, Ethiopia

    Google Scholar 

  • Zemadim B, Matthew MC, Bharat SM, Wale Abeyou (2011) Integrated rainwater management strategies in the Blue Nile basin of the Ethiopian highlands. Int J Water Resour Environ Eng 3(10):220–232

    Google Scholar 

  • Zemadim B, McCartney M, Langan S, Sharma B (2013) A participatory approach for hydrometeorological monitoring in the Blue Nile River basin of Ethiopia. Colombo, Sri Lanka: International Water Management Institute (IWMI). (IWMI research report 155), p 32. doi: 10.5337/2014.200. Available online http://www.iwmi.cgiar.org/publications/iwmi-research-reports/iwmi-research-report-155/

Download references

Acknowledgments

We would like to express our appreciation to the International Water Management Institute for providing the primary data and Diga research field data observers. Special thanks go to Diga catchment coordinator Mr. Tolera Megersa for providing the necessary material for the study. This chapter is part of the thesis work by the first author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mulatu L. Berihun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Berihun, M.L., Melesse, A.M., Zemadim, B. (2016). Spatiotemporal Variability of Hydrological Variables of Dapo Watershed, Upper Blue Nile Basin, Ethiopia. In: Melesse, A., Abtew, W. (eds) Landscape Dynamics, Soils and Hydrological Processes in Varied Climates. Springer Geography. Springer, Cham. https://doi.org/10.1007/978-3-319-18787-7_8

Download citation

Publish with us

Policies and ethics