Skip to main content

Landscape Changes Impact on Regional Hydrology and Climate

  • Chapter
  • First Online:
Landscape Dynamics, Soils and Hydrological Processes in Varied Climates

Part of the book series: Springer Geography ((SPRINGERGEOGR))

Abstract

There is enough evidence that landscape change has impact on regional energy and water balance resulting in climate change. Climate change also changes landscape. The expansion of the Sahara Desert corresponds to land degradation where the role of vegetation in keeping surface energy fractionation in balance and initiation of the rainfall process is diminished. Non-vegetated dry areas appropriate more solar energy to sensible heat (surface temperature increase) than latent heat (evapotranspiration ). Evapotranspiration has cooling effect and is part of the hydrologic cycle. Solar energy reflectance (albedo ) is dependent on surface characteristics. In this chapter, cases of landscape change and climate change in Africa, China, and the United States are presented. Application of remote sensing in observation of land cover, surface temperature, and energy partitioning is presented for monitoring wetland and dryland landscapes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abtew W, Melesse A (2013) Evaporation and evapotranspiration measurements and estimations. Springer, New York

    Book  Google Scholar 

  • Ahrens CD (2006) Meteorology today. An introduction to weather, climate and the environment, 8th edn. Thomson Brooks, Cole

    Google Scholar 

  • Baret F, Guyot G, Begue A, Maurel P, Podaire A (1988) Complimentarily of middle-infrared reflectance for monitoring wheat canopies. Remote Sens Environ 26:213–215

    Article  Google Scholar 

  • Bastiaanssen WGM (2000) SEBAL-based sensible and latent heat fluxes in the irrigated ediz Basin, Turkey. J Hydrol 229:87–100

    Article  Google Scholar 

  • Bastiaanssen WGM, Menenti M, Feddes RA, Holtslag AM (1998a) The surface energy balance algorithm for land (SEBAL): part 1 formulation. J Hydrol 212–213:198–212

    Article  Google Scholar 

  • Bastiaanssen WGM, Pelgrum H, Wang J, Ma Y, Moreno J, Roerink GJ, van der Wal T (1998b) The surface energy balance algorithm for land (SEBAL): part 2 validation. J Hydrol 212–213:213–229

    Article  Google Scholar 

  • Bishaw B (2001) Deforestation and land degradation in the Ethiopian highlands: a strategy for physical recovery. Northeast African Stud 8(1):7–26

    Article  Google Scholar 

  • Boyd DS, Foody GM, Curran PJ, Lucas RM, Honzaks M (1996) An assessment of radiance in Landsat TM middle and thermal infrared wave bands for the detection of tropical regeneration. Int J Remote Sens 17:249–261

    Article  Google Scholar 

  • Carlson TN, Arthur ST (2000) The impact of land use-land cover changes due to urbanization on surface microclimate and hydrology: a satellite perspective. Glob Planet Change 25:49–65

    Article  Google Scholar 

  • Carlson TN, Ripley AJ (1997) On the relationship between fractional vegetation cover, leaf area Index and NDVI. Remote Sens Environ 62:241–252

    Article  Google Scholar 

  • Che N, Price JC (1992) Survey of radiometric calibration results and methods for visible and near-infrared channels of NOAA-7,-9 and –11 AVHRRs. Remote Sens Environ 41:19–27

    Article  Google Scholar 

  • Chineke TC, Idinoba ME, Ajayi OC (2011) Seasonal evapotranspiration signature under a changing landscape and ecosystem management in Nigeria: implications for agriculture and food security. Am J Sci Ind Res. doi:10.5251/ajsir.2011.2.2.191.204

    Google Scholar 

  • Courel MF, Kandel KS, Rasool SI (1984) Surface albedo and Sahel drought. Lett Nat 307:528–531

    Article  Google Scholar 

  • Curran PJ, Dungan JL, Gholz HL (1992) Seasonal LAI in slash pine estimated with Landsat TM. Remote Sens Environ 39:3–13

    Article  Google Scholar 

  • Dafalla MS, Abdel-Rahman EM, Siddig KHA, Ibrahim IS, Csaplovics E (2014) Land use land cover changes in Northern Kordofan State of Sudan: a remotely sensed data analysis (chapter 15). In: Melesse A et al (eds) Nile River basin ecological challenges, climate change and hydropolitics. Springer, New York

    Google Scholar 

  • Dale VH (1997) The relationship between land-use change and climate change. Ecol Appl 7(3):753–769

    Article  Google Scholar 

  • Danson FM, Curran PJ (1993) Factors affecting the remotely sensed response of coniferous forest plantations. Remote Sens Environ 43:55–65

    Article  Google Scholar 

  • Earth Resources Data Analysis System (ERDAS) (1999) ERDAS field guide. ERDAS Inc, Atlanta

    Google Scholar 

  • Eiseltova M, Pokorny J, Hesslerova P, Ripl W (2012) Evapotranspiration—a driving force in landscape sustainability (chapter 14). In: Irmak A (ed) Evapotranspiration—remote sensing and modeling. InTech, Croatia

    Google Scholar 

  • French AN, Schmugge TJ, Kustas WP (2000) Estimating surface fluxes over the SGP site with remotely sensed data. Phys Chem Earth 25(2):167–172

    Article  Google Scholar 

  • Han L (1997) Spectral reflectance with varying suspended sediment concentrations in clear and algae-laden waters. Photogram Eng Remote Sens 63(6):701–705

    Google Scholar 

  • Hemakumara HM, Chandrapala L, Moene AF (2003) Evapotranspiration fluxes over mixed vegetation areas measured from large aperture scintillometer. Agric Water Manag 58(2):109–122

    Article  Google Scholar 

  • Jacobs CM, Elbers J, Brolsma R, Moors O, Rodreguez-Carretero M, van Hove BM (2014) Assessment of urban evapotranspiration in the Netherlands. In: An internal symposium on evapotranspiration: challenges in measurement and modelling from leaf to landscape scale and beyond, Raleigh, North Carolina, 7–14 April 2014. ASABE, USA

    Google Scholar 

  • Keeton WS, Mote PW, Franklin JF (2007) Climate variability, climate change, and western wildfire with implication for the urban-wildland interface. Adv Econ Environ Res 6:225–253

    Article  Google Scholar 

  • Kustas WP (1990) Estimates of evapotranspiration with a one-and two-layer model of heat transfer over partial canopy cover. J Appl Meteorol 29:704–715

    Article  Google Scholar 

  • Kustas WP, Norman JM (1999) Evaluation of soil and vegetation heat flux predictions using simple two-source model with radiometric temperatures for partial canopy cover. Agric Forest Meteorol 94:13–29

    Article  Google Scholar 

  • Kustas WP, Norman JM, Anderson MC, French AN (2003) Estimating sub-pixel surface temperatures and energy fluxes from the vegetation index–radiometric temperature relationship. Remote Sens Environ 85(4):429–440

    Article  Google Scholar 

  • Kustas WP, Li F, Jackson TJ, Prueger JH, MacPherson JI, Wolde M (2004) Effects of remote sensing pixel resolution on modeled energy flux variability of croplands in Iowa. Remote Sens Environ 92(4):535–547

    Article  Google Scholar 

  • Lagomasino D, Price RM, Whitman D, Melesse AM, Oberbauer S (2015) Spatial and temporal variability in spectral-based evapotranspiration measured from Landsat 5TM across two mangrove ecotones. Agric Forest Meteorol doi:10.1016/j.agronet.2014.11.017

  • Lambin EF, Strahler AH (1994) Indicators of land cover change—vector analysis in multi-temporal space at coarse spatial scale. Int J Remote Sens 15:2099–2119

    Article  Google Scholar 

  • Loiselle S, Bracchini L, Bonechi C, Rossi C (2001) Modeling energy fluxes in remote wetland ecosystems with the help of remote sensing. Ecol Model 45(2):243–261

    Article  Google Scholar 

  • Marshall CH, Pielke RA (2003) The impact of anthropogenic land-cover change on the Florida peninsula sea breezes and warm season sensible weather. Mon Weather Rev 132:28–52

    Article  Google Scholar 

  • Melesse AM, Jordan JD (2002) A comparison of fuzzy vs. augmented-ISODATA classification algorithm for cloud and cloud-shadow discrimination in Landsat imagery. Photogram Eng Remote Sens 68(9):905–911

    Google Scholar 

  • Melesse A, Nangia V (2005) Spatially distributed surface energy flux estimation using remotely-sensed data from agricultural fields. Hydrol Process 19(14):2653–2670

    Article  Google Scholar 

  • Melesse AM, Oberg J, Beeri O, Nangia V, Baumgartner D (2006) Spatiotemporal dynamics of evapotranspiration and vegetation at the Glacial Ridge Prairie restoration. Hydrol Process 20(7):1451–1464

    Article  Google Scholar 

  • Melesse A, Nangia V, Wang X, McClain M (2007) Wetland restoration response analysis using MODIS and groundwater data. Spec Issue Remote Sens Nat Res Environ Sens 7:1916–1933

    Google Scholar 

  • Melesse A, Frank A, Nangia V, Liebig M, Hanson J (2008) Analysis of energy fluxes and land surface parameters in grassland ecosystem: remote sensing perspective. Int J Remote Sens 29(11):3325–3341

    Article  Google Scholar 

  • Melesse A, Abtew W, Desalegne T (2009) Evaporation estimation of Rift Valley Lakes in ethiopia comparison of models. Sensors 9(12):9603–9615. doi:10.3390/s91209603

    Article  Google Scholar 

  • Mohamed YA, Bastiaanssen WGM, Savenije HHG (2004) Spatial variability of evaporation and moisture storage in the swamps of the upper Nile studied by remote sensing techniques. J Hydrol 289:145–164

    Article  Google Scholar 

  • Morse A, Tasumi M, Allen RG, Kramber W (2000) Application of the SEBAL methodology for estimating consumptive use of water and streamflow depletion in the Bear River basin of Idaho through remote sensing. Final report submitted to the Raytheon Systems Company, Earth Observation System Data and Information system Project, by Idaho Department of Water Resources and University of Idaho, 107 pp

    Google Scholar 

  • Nouri H, Beecham S, Kazemi F, Hassanli AM (2013) A review of ET measurement techniques for estimating the water requirements of urban landscape vegetation. Urban Water J 10(4):247–259

    Article  CAS  Google Scholar 

  • Oberg J, Melesse AM (2005) Wetland evapotranspiration dynamics vs. ecohydrological restoration: an energy balance and remote sensing approach. J Am Water Res Assoc 42(3):565–582

    Article  Google Scholar 

  • Oke TR (1992) Boundary layer climates, 2nd edn. Routledge, New York

    Google Scholar 

  • Panigrahy S, Parohar JS (1992) Role of middle-infrared bands of Landsat thematic mapper in determining the classification accuracy of rice. Int J Remote Sens 13:2943–2949

    Article  Google Scholar 

  • Pielke RA, Adegoke J, Beltran-Prezkurat A, Hiemstra CA, Lin J, Nair US, Niyogi D, Nobis TE (2007) An overview of regional land-use and land-cover impacts on rainfall. Tellus B 59(3):587–601

    Article  Google Scholar 

  • Price JC (1987) Calibration of satellite radiometers and the comparison of vegetation indices. Remote Sens Environ 21:15–27

    Article  Google Scholar 

  • Rouse JW, Haas RH, Schell JA, Deering DW (1974) Monitoring vegetation systems in the Great Plains with ERTS. In: Proceedings of third earth resources technology satellite-1 symposium, vol 351. NASA SP, Greenbelt, pp 3010–3017

    Google Scholar 

  • Rust W, Corstanje R, Holman IP, Milne AE (2014) Detecting land use and land management influences on catchment hydrology by modelling and wavelets. J Hydrol 517:378–389

    Article  Google Scholar 

  • Sailor DJ (1995) Simulated urban climate response to modification in surface albedo and vegetative cover. J Appl Meteorol 34:1694–1704

    Article  Google Scholar 

  • Senay GB, Budde M, Verdin JP, Melesse AM (2007) A coupled remote sensing and simplified energy balance approach to estimate actual evapotranspiration from irrigated fields. Spec Issue Remote Sens Nat Res Environ Sens 7:979–1000

    Google Scholar 

  • Senay GB, Verdin JP, Lietzow R, Melesse AM (2008) Global daily reference evapotranspiration modeling and validation. J Am Water Res Assoc (JAWRA) 44(4):969–979

    Article  Google Scholar 

  • Sileshi Y, Zanke U (2004) Recent changes in rainfall and rainy days in Ethiopia. Int J Climatol 24:973–983

    Article  Google Scholar 

  • Spangmyr M (2010) Global effects of albedo change due to urbanization. In: Seminar series no. 180. Department of Earth and Ecosystem Sciences, Lund University

    Google Scholar 

  • Spanner MA, Pierce LL, Running SW, Peterson DL (1990) The seasonality of AVHRR data of temperate coniferous forests: relationship with LAI. Remote Sens Environ 33:97–112

    Article  Google Scholar 

  • Stone TA, Schleeinger P, Houghton RA, Woodwell GM (1994) A map of the vegetation of South America based on satellite imagery. Photogram Eng Remote Sens 60:541–551

    Google Scholar 

  • Taha H (1997) Urban climates and heat islands: albedo, evapotranspiration and anthropogenic heat. Energy Build 25:99–103

    Article  Google Scholar 

  • Tucker CJ, Dregne HE, Newcomb WW (1991) Expansion and contraction of the Sahara Desert from 1980 to 1990. Science 253(5017):299–301 (new series)

    Article  CAS  Google Scholar 

  • Wang J, Bastiaanssen WGM, Ma Y, Pelgrum H (1998) Aggregation of land surface parameters in the oasis-desert systems of Northwest China. Hydrol Process 12:2133–2147

    Article  Google Scholar 

  • Xuejie G, Zhang D, Chen Z, Pal JS, Giorgi F (2007) Land use effects on climate in China as simulated by a regional climate model. Sci Chin D Earth Sci 50(4):620–628

    Article  Google Scholar 

  • Yallop ML, Ansio AM, Perkin RG, Cook J, Telling J, Fagan D, MacFarlane J, Stibal M, Barker G, Bellas C, Hodson A, Tranter M, Wdham J, Roberts NW (2012) Photophysiology and albedo-changing potential of the ice algal community on the surface of the Greenland Ice. ISME J 6(12):2302–2313

    Article  CAS  Google Scholar 

  • Zheng X, Eltahir EAB (1997) The response to deforestation and desertification in a model of West African monsoon. Geophys Res Lett 24(2):155–158

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wossenu Abtew .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Abtew, W., Melesse, A.M. (2016). Landscape Changes Impact on Regional Hydrology and Climate. In: Melesse, A., Abtew, W. (eds) Landscape Dynamics, Soils and Hydrological Processes in Varied Climates. Springer Geography. Springer, Cham. https://doi.org/10.1007/978-3-319-18787-7_3

Download citation

Publish with us

Policies and ethics