Skip to main content

Adaptive Monte Carlo Maximum Likelihood

  • Chapter
  • First Online:
Challenges in Computational Statistics and Data Mining

Part of the book series: Studies in Computational Intelligence ((SCI,volume 605))

Abstract

We consider Monte Carlo approximations to the maximum likelihood estimator in models with intractable norming constants. This paper deals with adaptive Monte Carlo algorithms, which adjust control parameters in the course of simulation. We examine asymptotics of adaptive importance sampling and a new algorithm, which uses resampling and MCMC. This algorithm is designed to reduce problems with degeneracy of importance weights. Our analysis is based on martingale limit theorems. We also describe how adaptive maximization algorithms of Newton-Raphson type can be combined with the resampling techniques. The paper includes results of a small scale simulation study in which we compare the performance of adaptive and non-adaptive Monte Carlo maximum likelihood algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Attouch H (1984) Variational convergence of functions and operators. Pitman, Boston

    Google Scholar 

  2. Besag J (1974) Spatial interaction and the statistical analysis of lattice systems. J R Stat Soc B 36:192–236

    MathSciNet  Google Scholar 

  3. Chow YS (1967) On a strong law of large numbers for martingales. Ann Math Stat 38:610

    Article  MATH  Google Scholar 

  4. Geyer CJ (1994) On the convergence of Monte Carlo maximum likelihood calculations. J R Stat Soc B 56:261–274

    MathSciNet  MATH  Google Scholar 

  5. Geyer CJ, Thompson EA (1992) Constrained Monte Carlo maximum likelihood for dependent data. J R Stat Soc B 54:657–699

    MathSciNet  Google Scholar 

  6. Hall P, Heyde CC (1980) Martinagale limit theory and its application. Academic Press, New York

    Google Scholar 

  7. Miasojedow B, Niemiro W (2014) Debiasing MCMC via importance sampling-resampling. In preparation

    Google Scholar 

  8. Helland IS (1982) Central limit theorems for martingales with discrete or continuous time. Scand J Stat 9:79–94

    MathSciNet  MATH  Google Scholar 

  9. Huffer FW, Wu H (1998) Markov chain Monte Carlo for autologistic regression models with application to the distribution of plant species. Biometrics 54:509–524

    Article  MATH  Google Scholar 

  10. Møller BJ, Pettitt AN, Reeves R, Berthelsen KK (2006) An efficient Markov chain Monte Carlo method for distributions with intractable normalising constants. Biometrika 93:451–458

    Google Scholar 

  11. Pettitt AN, Weir IS, Hart AG (2002) A conditional autoregressive Gaussian process for irregularly spaced multivariate data with application to modelling large sets of binary data. Stat Comput 12:353–367

    Article  MathSciNet  Google Scholar 

  12. Pollard D (1984) Convergence of stochastic processes. Springer, New York

    Book  MATH  Google Scholar 

  13. Rockafellar RT (1970) Convex analysis. Princeton University Press, Princeton

    MATH  Google Scholar 

  14. Rockafellar TJ, Wets RJ-B (2009) Variational analysis, 3rd edn. Springer, New York

    Google Scholar 

  15. Wu H, Huffer FW (1997) Modeling the distribution of plant species using the autologistic regression model. Environ Ecol Stat 4:49–64

    Article  Google Scholar 

  16. Younes L (1988) Estimation and annealing for Gibbsian fields. Annales de l’I H P sec B 24(2):269–294

    Google Scholar 

  17. Zalewska M, Niemiro W, Samoliński B (2010) MCMC imputation in autologistic model. Monte Carlo Methods Appl 16:421–438

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was partially supported by Polish National Science Center No. N N201 608 740.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech Niemiro .

Editor information

Editors and Affiliations

Appendix A: Martingale Limit Theorems

Appendix A: Martingale Limit Theorems

For completeness, we cite the following martingale central limit theorem (CLT):

Theorem A.1

([8, Theorem 2.5]) Let \(X_n = \xi _1 + \cdots + \xi _n\) be a mean-zero (vector valued) martingale. If there exists a symmetric positive definite matrix V such that

$$\begin{aligned} \frac{1}{n} \sum _{j=1}^n \mathbb {E}\Big ( \xi _j \xi _j^T | \mathcal {F}_{j-1} \Big ) \xrightarrow {\mathrm{p}}V, \end{aligned}$$
(A.1)
$$\begin{aligned} \frac{1}{n} \sum _{j=1}^n \mathbb {E}\Big ( \xi _j \xi _j^T \mathbf {1}_{|\xi _j| > \varepsilon \sqrt{n}}\, | \mathcal {F}_{j-1} \Big ) \xrightarrow {\mathrm{p}}0 \quad \text { for each } \varepsilon > 0, \end{aligned}$$
(A.2)

then

$$\begin{aligned} \frac{X_n}{\sqrt{n}} \xrightarrow {\mathrm{d}}\mathcal {N} (0, V). \end{aligned}$$

The Lindeberg condition (A.2) can be replaced by a stronger Lyapunov condition

$$\begin{aligned} \frac{1}{n} \sum _{j=1}^n \mathbb {E}\Big ( |\xi _j|^{2+\alpha } | \mathcal {F}_{j-1} \Big )\le M \quad \text { for some } \alpha > 0 \text { and }M<\infty . \end{aligned}$$
(A.3)

A simple consequence of [6, Theorem 2.18] (see also [3]) is the following strong law of large numbers (SLLN).

Theorem A.2

Let \(X_n = \xi _1 + \cdots + \xi _n\) be a mean-zero martingale. If

$$\begin{aligned} \sup _j \mathbb {E}\Big (|\xi _j|^{1+\alpha } | \mathcal {F}_{j-1} \Big )\le M \quad \text { for some } \alpha > 0 \text { and }M<\infty \end{aligned}$$

then

$$\begin{aligned} \frac{X_n}{n} \xrightarrow {\mathrm{a.s.}}0. \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Miasojedow, B., Niemiro, W., Palczewski, J., Rejchel, W. (2016). Adaptive Monte Carlo Maximum Likelihood. In: Matwin, S., Mielniczuk, J. (eds) Challenges in Computational Statistics and Data Mining. Studies in Computational Intelligence, vol 605. Springer, Cham. https://doi.org/10.1007/978-3-319-18781-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18781-5_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18780-8

  • Online ISBN: 978-3-319-18781-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics