Skip to main content

\(\beta \)-Deformed Matrix Models and 2d/4d Correspondence

  • Chapter
  • First Online:
Book cover New Dualities of Supersymmetric Gauge Theories

Part of the book series: Mathematical Physics Studies ((MPST))

Abstract

We review the \(\beta \)-deformed matrix model approach to the correspondence between four-dimensional \(\mathcal {N}=2\) gauge theories and two-dimensional conformal field theories. The \(\beta \)-deformed matrix model equipped with the log-type potential is obtained as a free field (Dotsenko-Fateev) representation of the conformal block of chiral conformal algebra in two dimensions, with the precise choice of integration contours. After reviewing various matrix models related to the conformal field theories in two-dimensions, we study the large N limit corresponding to turning off the Omega-background \(\epsilon _{1}, \epsilon _{2} \rightarrow 0\). We show that the large N analysis produces the purely gauge theory results. Furthermore we discuss the Nekrasov-Shatashvili limit (\(\epsilon _{2} \rightarrow 0\)) by which we see the connection with the quantum integrable system. We then perform the explicit integration of the matrix model. With the precise choice of the contours we see that this reproduces the expansion of the conformal block and also the Nekrasov partition function. This is a contribution to the special volume on the 2d/4d correspondence, edited by J. Teschner.

A citation of the form [V:x] refers to article number x in this volume.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The matrix model with a logarithmic potential was first studied by Penner [20] related to the Eular characteristic of a Riemann surface.

  2. 2.

    This is slightly different from the one in [9]. This is because we consider the Nekrasov partition function where the hypermultiplets are in the fundamental representation of the gauge group. Changing the representation to the anti-fundamental one leads to \(\alpha _{3} \rightarrow Q - \alpha _{3}\) in this case, then we recover the factor in [9].

References

  1. Brezin, E., Itzykson, C., Parisi, G., Zuber, J.: Planar diagrams. Commun. Math. Phys. 59, 35 (1978)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Ginsparg, P.H., Moore, G.W.: Lectures on 2-D gravity and 2-D string theory. arXiv:hep-th/9304011 [hep-th]

  3. Di Francesco, P., Ginsparg, P.H., Zinn-Justin, J.: 2-D Gravity and random matrices. Phys. Rep. 254, 1–133 (1995). arXiv:hep-th/9306153 [hep-th]

    Google Scholar 

  4. Dijkgraaf, R., Vafa, C.: A perturbative window into nonperturbative physics. arXiv:hep-th/0208048 [hep-th]

  5. Pestun, V.: Localization of gauge theory on a four-sphere and supersymmetric Wilson loops. Commun. Math. Phys. 313, 71–129 (2012). arXiv:0712.2824 [hep-th]

    Google Scholar 

  6. Kapustin, A., Willett, B., Yaakov, I.: Exact results for Wilson loops in superconformal Chern-Simons theories with matter. JHEP 1003, 089 (2010). arXiv:0909.4559 [hep-th]

  7. Dijkgraaf, R., Vafa, C.: Toda theories, matrix models, topological strings, and N=2 gauge systems. arXiv:0909.2453 [hep-th]

  8. Nekrasov, N.A.: Seiberg-Witten prepotential from instanton counting. Adv. Theor. Math. Phys. 7, 831–864 (2004). arXiv:hep-th/0206161 [hep-th]

    Google Scholar 

  9. Alday, L.F., Gaiotto, D., Tachikawa, Y.: Liouville correlation functions from four-dimensional gauge theories. Lett. Math. Phys. 91, 167–197 (2010). arXiv:0906.3219 [hep-th]

    Google Scholar 

  10. Gaiotto, D.: \({\cal {N}}{=}2\) dualities. JHEP 1208, 034 (2012). arXiv:0904.2715 [hep-th]

  11. Dotsenko, V., Fateev, V.: Conformal algebra and multipoint correlation functions in two-dimensional statistical models. Nucl. Phys. B240, 312 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  12. Dotsenko, V., Fateev, V.: Four point correlation functions and the operator algebra in the two-dimensional conformal invariant theories with the central charge \(c<1\). Nucl. Phys. B251, 691 (1985)

    Google Scholar 

  13. Marshakov, A., Mironov, A., Morozov, A.: Generalized matrix models as conformal field theories: discrete case. Phys. Lett. B265, 99–107 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  14. Kharchev, S., Marshakov, A., Mironov, A., Morozov, A., Pakuliak, S.: Conformal matrix models as an alternative to conventional multimatrix models. Nucl. Phys. B404, 717–750 (1993). arXiv:hep-th/9208044 [hep-th]

    Google Scholar 

  15. Kostov, I.: Gauge invariant matrix model for the A-D-E closed strings. Phys. Lett. B297, 74–81 (1992). arXiv:hep-th/9208053 [hep-th]

    Google Scholar 

  16. Witten, E.: Solutions of four-dimensional field theories via M theory. Nucl. Phys. B500, 3–42 (1997) arXiv:hep-th/9703166 [hep-th]

    Google Scholar 

  17. Nekrasov, N.A., Shatashvili, S.L.: Supersymmetric vacua and Bethe Ansatz. Nucl. Phys. Proc. Suppl. 192–193, 91–112 (2009). arXiv:0901.4744 [hep-th]

  18. Nekrasov, N.A., Shatashvili, S.L.: Quantum integrability and supersymmetric vacua. Prog. Theor. Phys. Suppl. 177, 105–119 (2009). arXiv:0901.4748 [hep-th]

    Google Scholar 

  19. Nekrasov, N.A., Shatashvili, S.L.: Quantization of integrable systems and four dimensional gauge theories. arXiv:0908.4052 [hep-th]

  20. Penner, R.: Perturbative series and the moduli space of Riemann surfaces. J. Differ. Geom. 27, 35 (1988)

    MathSciNet  MATH  Google Scholar 

  21. Mehta, M.L.: Random Matrices. Pure and Applied Mathematics Series, vol. 142, 3rd edn. Elsevier, Amsterdam (2004)

    MATH  Google Scholar 

  22. Eynard, B., Marchal, O.: Topological expansion of the Bethe Ansatz, and non-commutative algebraic geometry. JHEP 0903, 094 (2009). arXiv:0809.3367 [math-ph]

    Google Scholar 

  23. Kostov, I.K.: Conformal field theory techniques in random matrix models. arXiv:hep-th/9907060 [hep-th]

  24. Mironov, A., Morozov, A., Shakirov, S.: Conformal blocks as Dotsenko-Fateev integral discriminants. Int. J. Mod. Phys. A25, 3173–3207 (2010). arXiv:1001.0563 [hep-th]

    Google Scholar 

  25. Itoyama, H., Oota, T.: Method of generating q-expansion coefficients for conformal block and N=2 Nekrasov function by beta-deformed matrix model. Nucl. Phys. B838, 298–330 (2010). arXiv:1003.2929 [hep-th]

  26. Mironov, A., Morozov, A., Morozov, A.: Conformal blocks and generalized Selberg integrals. Nucl. Phys. B843, 534–557 (2011). arXiv:1003.5752 [hep-th]

    Google Scholar 

  27. Cheng, M.C., Dijkgraaf, R., Vafa, C.: Non-perturbative topological strings and conformal blocks. JHEP 1109, 022 (2011). arXiv:1010.4573 [hep-th]

  28. Itoyama, H., Maruyoshi, K., Oota, T.: The quiver matrix model and 2d-4d conformal connection. Prog. Theor. Phys. 123, 957–987 (2010). arXiv:0911.4244 [hep-th]

    Google Scholar 

  29. Chiantese, S., Klemm, A., Runkel, I.: Higher order loop equations for A(r) and D(r) quiver matrix models. JHEP 0403, 033 (2004). arXiv:hep-th/0311258 [hep-th]

  30. Maruyoshi, K., Yagi, F.: Seiberg-Witten curve via generalized matrix model. JHEP 1101, 042 (2011). arXiv:1009.5553 [hep-th]

  31. Bonelli, G., Maruyoshi, K., Tanzini, A., Yagi, F.: Generalized matrix models and AGT correspondence at all genera. JHEP 1107, 055 (2011). arXiv:1011.5417 [hep-th]

  32. Goulian, M., Li, M.: Correlation functions in Liouville theory. Phys. Rev. Lett. 66, 2051–2055 (1991)

    Article  ADS  Google Scholar 

  33. Verlinde, E.P., Verlinde, H.L.: Multiloop calculations in covariant superstring theory. Phys. Lett. B192, 95 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  34. Dijkgraaf, R., Verlinde, E.P., Verlinde, H.L.: C = 1 conformal field theories on Riemann surfaces. Commun. Math. Phys. 115, 649–690 (1988)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. D’Hoker, E., Phong, D.: The geometry of string perturbation theory. Rev. Mod. Phys. 60, 917 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  36. Mironov, A., Morozov, A., Shakirov, S.: On ‘Dotsenko-Fateev’ representation of the toric conformal blocks. J. Phys. A44, 085401 (2011). arXiv:1010.1734 [hep-th]

  37. David, F.: Loop equations and nonperturbative effects in two-dimensional quantum gravity. Mod. Phys. Lett. A5, 1019–1030 (1990)

    Article  ADS  Google Scholar 

  38. Ambjorn, J., Jurkiewicz, J., Makeenko, Y.: Multiloop correlators for two-dimensional quantum gravity. Phys. Lett. B251, 517–524 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  39. Itoyama, H., Matsuo, Y.: Noncritical Virasoro algebra of d \(<\) 1 matrix model and quantized string field. Phys. Lett. B255, 202–208 (1991)

    Google Scholar 

  40. Ambjorn, J., Chekhov, L., Kristjansen, C., Makeenko, Y.: Matrix model calculations beyond the spherical limit. Nucl. Phys. B404, 127–172 (1993). arXiv:hep-th/9302014 [hep-th]

    Google Scholar 

  41. Akemann, G.: Higher genus correlators for the Hermitian matrix model with multiple cuts. Nucl. Phys. B482, 403–430 (1996). arXiv:hep-th/9606004 [hep-th]

    Google Scholar 

  42. Marino, M.: Les Houches lectures on matrix models and topological strings. arXiv:hep-th/0410165 [hep-th]

  43. Alexandrov, A., Mironov, A., Morozov, A.: Partition functions of matrix models as the first special functions of string theory. 1. Finite size Hermitian one matrix model. Int. J. Mod. Phys. A19, 4127–4165 (2004). arXiv:hep-th/0310113 [hep-th]

  44. Eynard, B.: Topological expansion for the 1-Hermitian matrix model correlation functions. JHEP 0411, 031 (2004). arXiv:hep-th/0407261 [hep-th]

    Google Scholar 

  45. Eynard, B., Orantin, N.: Invariants of algebraic curves and topological expansion. Commun. Number Theory Phys. 1, 347–452 (2007). arXiv:math-ph/0702045

    Google Scholar 

  46. Chekhov, L., Eynard, B., Marchal, O.: Topological expansion of the Bethe Ansatz, and quantum algebraic geometry. arXiv:0911.1664 [math-ph]

  47. Chekhov, L.: Logarithmic potential \(\beta \)-ensembles and Feynman graphs. arXiv:1009.5940 [math-ph]

  48. Eguchi, T., Maruyoshi, K.: Penner type matrix model and Seiberg-Witten theory. JHEP 1002, 022 (2010). arXiv:0911.4797 [hep-th]

  49. Schiappa, R., Wyllard, N.: An A(r) threesome: matrix models, 2d CFTs and 4d N=2 gauge theories. J. Math. Phys. 51, 082304 (2010). arXiv:0911.5337 [hep-th]

  50. Eguchi, T., Maruyoshi, K.: Seiberg-Witten theory, matrix model and AGT relation. JHEP 1007, 081 (2010). arXiv:1006.0828 [hep-th]

  51. Nakajima, H., Yoshioka, K.: Lectures on instanton counting. arXiv:math/0311058 [math-ag]

  52. Itoyama, H., Yonezawa, N.: \(\epsilon \)-corrected Seiberg-Witten prepotential obtained from half genus expansion in beta-deformed matrix model. Int. J. Mod. Phys. A26, 3439–3467 (2011). arXiv:1104.2738 [hep-th]

  53. Nishinaka, T., Rim, C.: \(\beta \)-deformed matrix model and Nekrasov partition function. JHEP 1202, 114 (2012). arXiv:1112.3545 [hep-th]

  54. Morozov, A., Shakirov, S.: The matrix model version of AGT conjecture and CIV-DV prepotential. JHEP 1008, 066 (2010). arXiv:1004.2917 [hep-th]

  55. Brini, A., Marino, M., Stevan, S.: The uses of the refined matrix model recursion. J. Math. Phys. 52, 052305 (2011). arXiv:1010.1210 [hep-th]

    Google Scholar 

  56. Bonelli, G., Maruyoshi, K., Tanzini, A.: Quantum Hitchin systems via beta-deformed matrix models. arXiv:1104.4016 [hep-th]

  57. Gorsky, A., Krichever, I., Marshakov, A., Mironov, A., Morozov, A.: Integrability and Seiberg-Witten exact solution. Phys. Lett. B355, 466–474 (1995). arXiv:hep-th/9505035 [hep-th]

    Google Scholar 

  58. Martinec, E.J., Warner, N.P.: Integrable systems and supersymmetric gauge theory. Nucl. Phys. B459, 97–112 (1996). arXiv:hep-th/9509161 [hep-th]

    Google Scholar 

  59. Nakatsu, T., Takasaki, K.: Whitham-Toda hierarchy and N = 2 supersymmetric Yang-Mills theory. Mod. Phys. Lett. A11, 157–168 (1996). arXiv:hep-th/9509162 [hep-th]

    Google Scholar 

  60. Donagi, R., Witten, E.: Supersymmetric Yang-Mills theory and integrable systems. Nucl. Phys. B460, 299–334 (1996). arXiv:hep-th/9510101 [hep-th]

    Google Scholar 

  61. Itoyama, H., Morozov, A.: Integrability and Seiberg-Witten theory: curves and periods. Nucl. Phys. B477, 855–877 (1996). arXiv:hep-th/9511126 [hep-th]

    Google Scholar 

  62. Itoyama, H., Morozov, A.: Prepotential and the Seiberg-Witten theory. Nucl. Phys. B491, 529–573 (1997). arXiv:hep-th/9512161 [hep-th]

    Google Scholar 

  63. Gaiotto, D., Moore, G.W., Neitzke, A.: Wall-crossing, Hitchin systems, and the WKB approximation. arXiv:0907.3987 [hep-th]

  64. Mironov, A., Morozov, A., Shakirov, S.: Matrix model conjecture for exact BS periods and nekrasov functions. JHEP 1002, 030 (2010). arXiv:0911.5721 [hep-th]

  65. Teschner, J.: Quantization of the Hitchin moduli spaces, Liouville theory, and the geometric Langlands correspondence I. Adv. Theor. Math. Phys. 15, 471–564 (2011). arXiv:1005.2846 [hep-th]

    Google Scholar 

  66. Maruyoshi, K., Taki, M.: Deformed prepotential, quantum integrable system and Liouville field theory. Nucl. Phys. B841, 388–425 (2010). arXiv:1006.4505 [hep-th]

    Google Scholar 

  67. Alday, L.F., Tachikawa, Y.: Affine SL(2) conformal blocks from 4d gauge theories. Lett. Math. Phys. 94, 87–114 (2010). arXiv:1005.4469 [hep-th]

    Google Scholar 

  68. Alday, L.F., Gaiotto, D., Gukov, S., Tachikawa, Y., Verlinde, H.: Loop and surface operators in N=2 gauge theory and Liouville modular geometry. JHEP 1001, 113 (2010). arXiv:0909.0945 [hep-th]

  69. Marshakov, A., Mironov, A., Morozov, A.: On AGT relations with surface operator insertion and stationary limit of beta-ensembles. J. Geom. Phys. 61, 1203–1222 (2011). arXiv:1011.4491 [hep-th]

    Google Scholar 

  70. Aganagic, M., Cheng, M.C., Dijkgraaf, R., Krefl, D., Vafa, C.: Quantum geometry of refined topological strings. JHEP 1211, 019 (2012). arXiv:1105.0630 [hep-th]

  71. Kozcaz, C., Pasquetti, S., Wyllard, N.: A and B model approaches to surface operators and Toda theories. JHEP 1008, 042 (2010). arXiv:1004.2025 [hep-th]

  72. Bourgine, J.-E.: Large N limit of beta-ensembles and deformed Seiberg-Witten relations. JHEP 1208, 046 (2012). arXiv:1206.1696 [hep-th]

  73. Bourgine, J.-E.: Large N techniques for Nekrasov partition functions and AGT conjecture. JHEP 1305, 047 (2013). arXiv:1212.4972 [hep-th]

  74. Belavin, A., Polyakov, A.M., Zamolodchikov, A.: Infinite conformal symmetry in two-dimensional quantum field theory. Nucl. Phys. B241, 333–380 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  75. Marshakov, A., Mironov, A., Morozov, A.: Combinatorial expansions of conformal blocks. Theor. Math. Phys. 164, 831–852 (2010). arXiv:0907.3946 [hep-th]

    Google Scholar 

  76. Mironov, A., Mironov, S., Morozov, A., Morozov, A.: CFT exercises for the needs of AGT. arXiv:0908.2064 [hep-th]

  77. Morozov, A., Smirnov, A.: Towards the proof of AGT relations with the help of the generalized Jack polynomials. Lett. Math. Phys. 104(5), 585–612 (2014). arXiv:1307.2576 [hep-th]

    Google Scholar 

  78. Mironov, A., Morozov, A., Shakirov, S.: A direct proof of AGT conjecture at beta = 1. JHEP 1102, 067 (2011). arXiv:1012.3137 [hep-th]

  79. Zhang, H., Matsuo, Y.: Selberg integral and SU(N) AGT conjecture. JHEP 1112, 106 (2011). arXiv:1110.5255 [hep-th]

  80. Mironov, S., Morozov, A., Zenkevich, Y.: Generalized Jack polynomials and the AGT relations for the \(SU(3)\) group. arXiv:1312.5732 [hep-th]

  81. Nishinaka, T., Rim, C.: Matrix models for irregular conformal blocks and Argyres-Douglas theories. JHEP 1210, 138 (2012). arXiv:1207.4480 [hep-th]

  82. Rim, C.: Irregular conformal block and its matrix model. arXiv:1210.7925 [hep-th]

  83. Choi, S.-K., Rim, C.: Parametric dependence of irregular conformal block. arXiv:1312.5535 [hep-th]

  84. Gaiotto, D.: Asymptotically free N=2 theories and irregular conformal blocks. arXiv:0908.0307 [hep-th]

  85. Marshakov, A., Mironov, A., Morozov, A.: On non-conformal limit of the AGT relations. Phys. Lett. B682, 125–129 (2009). arXiv:0909.2052 [hep-th]

    Google Scholar 

  86. Bonelli, G., Maruyoshi, K., Tanzini, A.: Wild quiver gauge theories. JHEP 1202, 031 (2012). arXiv:1112.1691 [hep-th]

  87. Gaiotto, D., Teschner, J.: Irregular singularities in Liouville theory and Argyres-Douglas type gauge theories, I. JHEP 1212, 050 (2012). arXiv:1203.1052 [hep-th]

  88. Itoyama, H., Oota, T., Yonezawa, N.: Massive scaling limit of beta-deformed matrix model of Selberg type. Phys. Rev. D82, 085031 (2010). arXiv:1008.1861 [hep-th]

  89. Fujita, M., Hatsuda, Y., Tai, T.-S.: Genus-one correction to asymptotically free Seiberg-Witten prepotential from Dijkgraaf-Vafa matrix model. JHEP 1003, 046 (2010). arXiv:0912.2988 [hep-th]

  90. Krefl, D.: Penner type ensemble for gauge theories revisited. Phys. Rev. D87, 045027 (2013). arXiv:1209.6009 [hep-th]

  91. Mironov, A., Morozov, A., Shakirov, S.: Brezin-Gross-Witten model as ‘pure gauge’ limit of Selberg integrals. JHEP 1103, 102 (2011). arXiv:1011.3481 [hep-th]

  92. Awata, H., Yamada, Y.: Five-dimensional AGT relation and the deformed beta-ensemble. Prog. Theor. Phys. 124, 227–262 (2010). arXiv:1004.5122 [hep-th]

  93. Mironov, A., Morozov, A., Shakirov, S., Smirnov, A.: Proving AGT conjecture as HS duality: extension to five dimensions. Nucl. Phys. B855, 128–151 (2012). arXiv:1105.0948 [hep-th]

    Google Scholar 

  94. Klemm, A., Sulkowski, P.: Seiberg-Witten theory and matrix models. Nucl. Phys. B819, 400–430 (2009). arXiv:0810.4944 [hep-th]

    Google Scholar 

  95. Sulkowski, P.: Matrix models for beta-ensembles from Nekrasov partition functions. JHEP 1004, 063 (2010). arXiv:0912.5476 [hep-th]

  96. Marshakov, A.: On gauge theories as matrix models. Teor. Mat. Fiz. 169, 391–412 (2011). arXiv:1101.0676 [hep-th]

  97. Kimura, T.: Matrix model from N = 2 orbifold partition function. JHEP 1109, 015 (2011). arXiv:1105.6091 [hep-th]

  98. Selberg, A.: Norsk. Mat. Tisdskr. 24, 71 (1944)

    Google Scholar 

  99. Aomoto, K.: On the complex Selberg integral. Q. J. Math. 38, 385–399 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  100. Kaneko, J.: Selberg integrals and hypergeometric functions associated with Jack polynomials. SIAM J. Math. Anal. 24, 1086–1110 (1993)

    Google Scholar 

  101. Kadell, K.: The Selberg-Jack symmetric functions. Adv. Math. 130, 33–102 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author would like to thank Giulio Bonelli, Tohru Eguchi, Hiroshi Itoyama, Takeshi Oota, Alessandro Tanzini, and Futoshi Yagi for stimulating collaborations on the \(\beta \) deformed matrix model. The author would like to thank Kazuo Hosomichi and Pavel Putrov for helpful discussions and useful comments. This work of the author is supported by the EPSRC programme grant “New Geometric Structures from String Theory”, EP/K034456/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazunobu Maruyoshi .

Editor information

Editors and Affiliations

Appendix: Integral Formulas

Appendix: Integral Formulas

Let us define the following multiple integral

$$\begin{aligned} \langle \!\langle x^{Y}\rangle \!\rangle _{N}= & {} \prod _{I=1}^{N} \int _{0}^{1} d x_{I} \prod _{I=1}^{N} x_{I}^{\alpha } (1-x_{I})^{\beta } \prod _{1\le I <J\le N} (x_{I} - x_{J})^{2\gamma } x^{Y} \end{aligned}$$
(6.1)

where supposing that \(\mathfrak {R}\beta >0, \ldots \) for convergence of the integrals. When \(Y=\emptyset \) and \(Y = [1^{k}]\), this is the Selberg integral [98] and Aomoto integral [99]

$$\begin{aligned} \langle \!\langle 1\rangle \!\rangle _{N}= & {} \prod _{j=0}^{N-1}\frac{\Gamma (\alpha + 1 + j\gamma ) \Gamma (\beta + 1 + j \gamma ) \Gamma (1 + (j+1)\gamma )}{\Gamma (\alpha + \beta + 2 + (N + j-1)\gamma ) \Gamma (1 + \gamma )}, \nonumber \\ \langle \!\langle x^{Y=[1^{k}]}\rangle \!\rangle _{N}= & {} \langle \!\langle 1\rangle \!\rangle _{N} \prod _{j=1}^{k} \frac{\alpha + 1 +(N-j)\gamma }{\alpha + \beta + 2 + (2N - j -1)\gamma }. \end{aligned}$$
(6.2)

Another multiple integral which appeared in the main text is involving the Jack polynomial \(P_{Y}(x)\). This is a polynomial of \((x_{1},x_{2},\ldots ,x_{N})\) and written as

$$\begin{aligned} P_{Y}(x)= m_{Y}(x) + \sum _{Y'<Y} a_{Y,Y'}m_{Y'}(x), \end{aligned}$$
(6.3)

where \(m_{Y}(x)\) is the monomial symmetric polynomial. Then the following integral is given by [100, 101]

$$\begin{aligned} \langle \!\langle P_{Y}(x) \rangle \!\rangle _{N}= & {} \prod _{I=1}^{N} \int _{0}^{1} d x_{I} \prod _{I=1}^{N} x_{I}^{\alpha } (1-x_{I})^{\beta } \prod _{1\le I <J\le N} (x_{I} - x_{J})^{2\gamma } P_{Y}(x) \\= & {} \prod _{i\ge 1}\prod _{j=0}^{y_{i}-1} \frac{\alpha + 1 +j+(N-i)\gamma }{\alpha + \beta + 2 + j+ (2N - i -1)\gamma } \frac{\prod _{i\ge 1}\prod _{j=0}^{y_{i}-1} (N+1-i)\gamma + j}{\prod _{(i,j)\in Y} (y_{i}-j+(\tilde{y}_{j} - i+1)\gamma )}, \nonumber \end{aligned}$$
(6.4)

where \(Y=[y_{1},y_{2},\ldots ]\) with \(y_{1}\ge y_{2}\ge \ldots \) and \(\tilde{Y} = [\tilde{y}_{1} \ge \tilde{y}_{2} \ge \ldots ]\) is the transpose of Y.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Maruyoshi, K. (2016). \(\beta \)-Deformed Matrix Models and 2d/4d Correspondence. In: Teschner, J. (eds) New Dualities of Supersymmetric Gauge Theories. Mathematical Physics Studies. Springer, Cham. https://doi.org/10.1007/978-3-319-18769-3_5

Download citation

Publish with us

Policies and ethics