Advertisement

The Askaryan Radio Array (ARA)

  • Thomas MeuresEmail author
Chapter
  • 289 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

The Askaryan Radio Array (ARA) is currently being constructed as a detector for GZK neutrinos based on the Askaryan emission from neutrino-induced cascades, as described in the previous chapter.

Keywords

Notch Filter Attenuation Length Voltage Standing Wave Ratio Surface Antenna Trigger Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    IceCube Collaboration, R. Abbasi et al., The IceCube data acquisition system: signal capture, digitization, and timestamping. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 601(3), 294–316 (2009)Google Scholar
  2. 2.
    ARA Collaboration, P. Allison et al., Design and initial performance of the Askaryan Radio Array prototype EeV neutrino detector at the South Pole. Astropart. Phys. 35(7), 457–477 (2012)Google Scholar
  3. 3.
    ARA Collaboration, P. Allison et al., First constraints on the ultra-high energy neutrino flux from a prototype station of the Askaryan Radio Array (2014)Google Scholar
  4. 4.
    A. Connolly. Private communication (2011)Google Scholar
  5. 5.
    S. Barwick, D. Besson, P. Gorham, D. Saltzberg, South polar in situ radio-frequency ice attenuation. J. Glaciol. 51(173), 231–238 (2005)CrossRefADSGoogle Scholar
  6. 6.
    I. Kravchenko, D. Besson, J. Meyers, In situ index-of-refraction measurements of the South polar firn with the RICE detector. J. Glaciol. 50(171), 522–532 (2004)CrossRefADSGoogle Scholar
  7. 7.
    R. Gaïor. Private communication (2014)Google Scholar
  8. 8.
    T. Kuwabara. Private communication (2014)Google Scholar
  9. 9.
    P.W. Gorham et al., Observational constraints on the ultrahigh energy cosmic neutrino flux from the second flight of the ANITA experiment. Phys. Rev. D 82, 022004 (2010)CrossRefADSGoogle Scholar
  10. 10.
    Pierre Auger Collaboration, A. Letessier-Selvon et al., Highlights from the Pierre Auger Observatory, Braz. J. Phys. (2014). http://xxx.lanl.gov/abs/1310.4620. arXiv:1310.4620
  11. 11.
    IceCube Collaboration, M. Aartsen et al., Observation of high-energy astrophysical neutrinos in three years of IceCube data, Phys. Rev. Lett. 113, 101101 (2014). http://xxx.lanl.gov/abs/1405.5303. arXiv:1405.5303
  12. 12.
    IceCube Collaboration, M. Aartsen et al., Probing the origin of cosmic-rays with extremely high energy neutrinos using the IceCube observatory, Phys. Rev. D 88, 112008 (2013). http://xxx.lanl.gov/abs/1310.5477. arXiv:1310.5477
  13. 13.
    M. Ahlers et al., GZK neutrinos after the Fermi-LAT diffuse photon flux measurement. Astropart. Phys. 34(2), 106–115 (2010)CrossRefADSGoogle Scholar
  14. 14.
    J. Abraham et al., Properties and performance of the prototype instrument for the Pierre Auger Observatory. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 523(1–2), 50–95 (2004)CrossRefADSGoogle Scholar
  15. 15.
    Pierre Auger Collaboration, P. Abreu et al., Ultrahigh energy neutrinos at the Pierre Auger observatory, Adv. High Energy Phys. 2013, 708680 (2013). http://xxx.lanl.gov/abs/1304.1630. arXiv:1304.1630
  16. 16.
    I. Kravchenko et al., Updated results from the RICE experiment and future prospects for ultra-high energy neutrino detection at the south pole. Phys. Rev. D 85, 062004 (2012)CrossRefADSGoogle Scholar
  17. 17.
    S.W. Barwick for the ARIANNA Collaboration, Performance of the ARIANNA prototype array, in Proceedings of 33rd International Cosmic Ray Conference, 2013Google Scholar
  18. 18.
    Y. Abdou et al., Design and performance of the South Pole acoustic test setup. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 683, 78–90 (2012)Google Scholar
  19. 19.
    J. Aguilar et al., AMADEUS-The acoustic neutrino detection test system of the ANTARES deep-sea neutrino telescope. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 626–627, 128–143 (2011)Google Scholar
  20. 20.
    O. Scholten et al., Improved flux limits for neutrinos with energies above \({10}^{22}\,{\rm {eV}}\) from observations with the Westerbork synthesis radio telescope. Phys. Rev. Lett. 103, 191301 (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Université Libre de Bruxelles – IIHEBrusselsBelgium

Personalised recommendations