Advertisement

The Askaryan Effect in Dense Media

  • Thomas MeuresEmail author
Chapter
  • 291 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

As we have seen in the last chapter, GZK neutrinos only arrive very rarely at Earth, i.e. they interact roughly once per \({1}\,\mathrm{{km}}^3\)/year in dense matter like ice and water. Large detector volumes are necessary to efficiently catch such neutrinos. In this chapter the emission of coherent radio waves from an excess negative charge in cascades, induced by ultra-high energy neutrinos, as first discussed by Askaryan in the sixties [1, 2] will be presented. The attenuation length for so-called Askaryan emission can be on the order of one kilometer in ice or similar radio-transparent materials, which renders feasible the construction of large neutrino detectors such as the Askaryan Radio Array (ARA).

Keywords

Pair Production Primary Energy Observation Angle Energy Loss Mechanism Large Detector Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    G.A. Askaryan, Excess negative charge of an electron-photon shower and its coherent radio emission. JETP 41, 616–618 (1962)Google Scholar
  2. 2.
    G.A. Askaryan, Coherent radio emission from cosmic showers in air and in dense media. JETP 48, 988–990 (1965)Google Scholar
  3. 3.
    E. Zas, F. Halzen, T. Stanev, Electromagnetic pulses from high-energy showers: implications for neutrino detection. Phys. Rev. D 45, 362–376 (1992)CrossRefADSGoogle Scholar
  4. 4.
    L.D. Landau, I.I. Pomeranchuk, The limits of applicability of the theory of Bremsstrahlung by electrons and of the creation of pairs at large energies. Dokl. Akad. Nauk SSSR 92, 535 (1953)zbMATHGoogle Scholar
  5. 5.
    A.B. Migdal, Bremsstrahlung and pair production in condensed media at high energies. Phys. Rev. 103, 1811–1820 (1956)CrossRefADSzbMATHGoogle Scholar
  6. 6.
    T. Stanev et al., Development of ultrahigh-energy electromagnetic cascades in water and lead including the Landau-Pomeranchuk-Migdal effect. Phys. Rev. D 25, 1291–1304 (1982)CrossRefADSGoogle Scholar
  7. 7.
    H.A. Bethe, Molière’s theory of multiple scattering. Phys. Rev. 89, 1256–1266 (1953)CrossRefADSzbMATHMathSciNetGoogle Scholar
  8. 8.
    K.D. de Vries. Private communication (2014)Google Scholar
  9. 9.
    J. Lundberg et al., Light tracking through ice and water–scattering and absorption in heterogeneous media with photonics. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 581(3), 619–631 (2007)CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    J. Alvarez-Muñiz, E. Zas, Cherenkov radio pulses from EeV neutrino interactions: the LPM effect. Phys. Lett. B 411(1–2), 218–224 (1997)CrossRefADSGoogle Scholar
  11. 11.
    J. Alvarez-Muñiz, A. Romero-Wolf, E. Zas, Čerenkov radio pulses from electromagnetic showers in the time domain. Phys. Rev. D 81, 123009 (2010)CrossRefADSGoogle Scholar
  12. 12.
    S. Hussain, D.W. McKay, Comparative study of radio pulses from simulated hadron-, electron-, and neutrino-initiated showers in ice in the GeV-PeV range. Phys. Rev. D 70, 103003 (2004)CrossRefADSGoogle Scholar
  13. 13.
    J. Alvarez-Muñiz, W.R.J. Carvalho, M. Tueros, E. Zas, Coherent Cherenkov radio pulses from hadronic showers up to EeV energies, Astropart. Phys. 35(6), 287–299 (2012)Google Scholar
  14. 14.
    K.D. de Vries, O. Scholten, K. Werner, Macroscopic geo-magnetic radiation model; polarization effects and finite volume calculations. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 662(1), S175–S178 (2012)CrossRefGoogle Scholar
  15. 15.
    O. Scholten, K. Werner, F. Rusydi, A macroscopic description of coherent geo-magnetic radiation from cosmic-ray air showers. Astropart. Phys. 29(2), 94–103 (2008)CrossRefADSGoogle Scholar
  16. 16.
    K. Werner, K.D. de Vries, O. Scholten, A realistic treatment of geomagnetic Cherenkov radiation from cosmic ray air showers. Astropart. Phys. 37, 5–16 (2012)CrossRefADSGoogle Scholar
  17. 17.
    V. Marin, B. Revenu, Simulation of radio emission from cosmic ray air shower with SELFAS2. Astropart. Phys. 35(11), 733–741 (2012)CrossRefADSGoogle Scholar
  18. 18.
    T. Huege, M. Ludwig, C. James, Simulating radio emission from air showers with CoREAS. http://xxx.lanl.gov/abs/1301.2132. arXiv:1301.2132
  19. 19.
    D. Saltzberg et al., Observation of the Askaryan effect: coherent microwave Cherenkov emission from charge asymmetry in high-energy particle cascades. Phys. Rev. Lett. 86, 2802–2805 (2001)CrossRefADSGoogle Scholar
  20. 20.
    P.W. Gorham et al., Accelerator measurements of the Askaryan effect in rock salt: a roadmap toward teraton underground neutrino detectors. Phys. Rev. D 72, 023002 (2005)CrossRefADSGoogle Scholar
  21. 21.
    ANITA Collaboration, P.W. Gorham et al., Observations of the Askaryan effect in ice. Phys. Rev. Lett. 99, 171101 (2007)Google Scholar
  22. 22.
    Pierre Auger Collaboration, A. Aab et al., Probing the radio emission from air showers with polarization measurements. Phys. Rev. D 89, 052002 (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Université Libre de Bruxelles – IIHEBrusselsBelgium

Personalised recommendations