• Thomas MeuresEmail author
Part of the Springer Theses book series (Springer Theses)


The investigations, conducted in the frame of this thesis, are dedicated to the development and verification of techniques for the detection of ultra-high energy neutrinos, using the coherent radio emission from neutrino-induced cascades.


Neutrino Flux High Energy Neutrino Astroparticle Physic Pierre Auger Observatory Cosmic Neutrino 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    K.A. Olive et al. (PDG), Cosmic rays. Chin. Phys. C 38, 090001 (2014)Google Scholar
  2. 2.
    V.F. Hess, Über Beobachtungen der durchdringenden Strahlung bei sieben Freiballonfahrten. Physikalische Zeitschrift XIII, 1084–1091 (1912)Google Scholar
  3. 3.
    C.D. Anderson, The positive electron. Phys. Rev. 43, 491–494 (1933)CrossRefADSGoogle Scholar
  4. 4.
    A.M. Hillas, Cosmic rays: recent progress and some current questions. ArXiv Astrophysics e-prints (2006) [astro-ph/0607109]Google Scholar
  5. 5.
    AGASA Collaboration, N. Chiba et al., Akeno Giant Air Shower Array (AGASA) covering 100 km\(^{2}\) area, Nucl. Instrum. Methods Phys. Res. Sect. A 311(1–2), 338–349 (1992)Google Scholar
  6. 6.
    R. Abbasi et al., Measurement of the flux of ultra high energy cosmic rays by the stereo technique. Astropart. Phys. 32(1), 53–60 (2009)CrossRefADSGoogle Scholar
  7. 7.
    LOFAR Collaboration, P. Schellart et al., Detecting cosmic rays with the LOFAR radio telescope. Astron. Astrophys. A 98, 560 (2013)Google Scholar
  8. 8.
    Pierre Auger Collaboration, A. Letessier-Selvon et al., Highlights from the pierre auger observatory. Braz. J. Phys. (2014). arXiv:1310.4620
  9. 9.
    Telescope Array Collaboration, T. Abu-Zayyad et al., The surface detector array of the telescope array experiment. Nucl. Instrum. Methods Phys. Res. Sect. A 689, 87–97 (2012)Google Scholar
  10. 10.
    IceCube Collaboration, M.G. Aartsen et al., Measurement of the cosmic ray energy spectrum with IceTop-73. Phys. Rev. D 88, 042004 (2013)Google Scholar
  11. 11.
    J. Beringer et al. (PDG), Neutrino cross section measurements. Phys. Rev. D 86, 010001 (2012)Google Scholar
  12. 12.
    R. Gandhi, C. Quigg, M.H. Reno, I. Sarcevic, Ultrahigh-energy neutrino interactions. Astropart. Phys. 5(2), 81–110 (1996)CrossRefADSGoogle Scholar
  13. 13.
    W. Pauli, Dear radioactive ladies and gentlemen. Phys. Today 31N9, 27 (1978)Google Scholar
  14. 14.
    F. Reines, The neutrino: from poltergeist to particle. Rev. Mod. Phys. 68, 317–327 (1996)CrossRefADSGoogle Scholar
  15. 15.
    C. Cowan, F. Reines, F. Harrison, H. Kruse, A. McGuire, Detection of the free neutrino: a confirmation. Science 124, 103–104 (1956)CrossRefADSGoogle Scholar
  16. 16.
    V.M. Hannen, Direct neutrino mass determination: status and prospects. J. Phys. Conf. Ser. 375(4), 042004 (2012)Google Scholar
  17. 17.
    S. Hannestad, A. Mirizzi, G.G. Raffelt, Y.Y. Wong, Neutrino and axion hot dark matter bounds after WMAP-7. J. Cosmol. Astropart. Phys. 2010(8), 001 (2010)Google Scholar
  18. 18.
    KATRIN Collaboration, J. Wolf et al., The KATRIN neutrino mass experiment. in 1st International Conference on Technology and Instrumentation in Particle Physics, vol 623, no 1, pp. 442–444 (2010)Google Scholar
  19. 19.
    Super-Kamiokande Collaboration, Y. Fukuda et al., Evidence for oscillation of atmospheric neutrinos. Phys. Rev. Lett. 81, 1562–1567 (1998)CrossRefGoogle Scholar
  20. 20.
    K.A. Olive et al. (PDG), Neutrino mass, mixing, and oscillations. Chin. Phys. C 38, 090001 (2014)Google Scholar
  21. 21.
    Super-Kamiokande Collaboration, Y. Fukuda et al., The Super-Kamiokande detector. Nucl. Instrum. Methods A 501, 418–462 (2003)Google Scholar
  22. 22.
    F.P. An et al., Observation of electron-antineutrino disappearance at daya bay. Phys. Rev. Lett. 108, 171803 (2012)Google Scholar
  23. 23.
    Y. Abe et al., Indication of reactor \(\bar{\nu _{e}}\) disappearance in the double chooz experiment. Phys. Rev. Lett. 108, 131801 (2012)Google Scholar
  24. 24.
    RENO Collaboration, J.K. Ahn et al., Observation of reactor electron antineutrinos disappearance in the RENO experiment. Phys. Rev. Lett. 108, 191802 (2012)Google Scholar
  25. 25.
    G. Mention et al., Reactor antineutrino anomaly. Phys. Rev. D 83, 073006 (2011)CrossRefADSGoogle Scholar
  26. 26.
    K. Nakamura et al. (PDG), Review of particle physics. J. Phys. G: Nucl. Part. Phys. 37(7A), 075021 (2010)Google Scholar
  27. 27.
    E. Majorana, Teoria simmetrica dell elettrone e del positrone. Il Nuovo Cimento 14(4), 171–184 (1937)CrossRefGoogle Scholar
  28. 28.
    M. Markov, On high energy neutrino physics, in Proceedings of the 1960 Annual International Conference on HEP at Rochester, 578–581 (1960)Google Scholar
  29. 29.
    B.T. Cleveland et al., Measurement of the solar electron neutrino flux with the homestake chlorine detector. Astrophys. J. 496(1), 505 (1998)Google Scholar
  30. 30.
    W. Arnett, J.N. Bahcall, R. Kirshner, S. Woosley, SUPERNOVA SN1987A. Ann. Rev. Astron. Astrophys. 27, 629–700 (1989)CrossRefADSGoogle Scholar
  31. 31.
    K. Hirata et al., Observation of a neutrino burst from the supernova SN1987A. Phys. Rev. Lett. 58, 1490–1493 (1987)CrossRefADSGoogle Scholar
  32. 32.
    R.M. Bionta, et al., Observation of a neutrino burst in coincidence with supernova, (1987A) in the large magellanic cloud. Phys. Rev. Lett. 58, 1494–1496 (1987)Google Scholar
  33. 33.
    E. Alexeyev, L. Alexeyeva, I. Krivoscheina, V. Volchenko, Detection of the neutrino signal from sn1987a using the inr baksan underground scintillation telescope, ed. by H. Klapdor, B. Povh. Neutrino Physics (Springer, Berlin, 1988), pp. 288–298Google Scholar
  34. 34.
    IceCube Collaboration, R. Abbasi et al., The IceCube data acquisition system: signal capture, digitization, and timestamping. Nucl. Instrum. Methods Phys. Res. Sect. A 601(3), 294–316 (2009)CrossRefADSGoogle Scholar
  35. 35.
    IceCube Collaboration, M. Aartsen et al., Observation of high-energy astrophysical neutrinos in three years of icecube data. Phys. Rev. Lett. 113, 101101 (2014). arXiv:1405.5303
  36. 36.
    K. Greisen, End to the cosmic-ray spectrum? Phys. Rev. Lett. 16, 748–750 (1966)CrossRefADSGoogle Scholar
  37. 37.
    G.T. Zatsepin, V.A. Kuzmin, Upper limit of the spectrum of cosmic rays. JETP Lett. 4, 78–80 (1966)ADSGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Université Libre de Bruxelles – IIHEBrusselsBelgium

Personalised recommendations