Skip to main content

Treating Relativistic Effects in Transition Metal Complexes

  • Chapter
  • First Online:
  • 400 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Working with transition metal complexes in a computational environment presents itself with a set of added considerations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The electron mass is explicitly included in this section.

  2. 2.

    This is a rough estimation, based on the energy of a 1s electron in hydrogen in atomic units is \(V = - \frac{-Z^2}{2}\), and that the classical virial theorem: \(T = \frac{v^2}{2} = -\frac{Z^2}{2}\).

  3. 3.

    Which still integrates up over all space to the number of electrons in the system.

  4. 4.

    Details in Sect. 5.1, Chap. 5.

References

  1. H. Heinz, R.A. Vaia, B.L. Farmer, R.R. Naik, J. Phy. Chem. C 112, 17281 (2008)

    Article  CAS  Google Scholar 

  2. Z. Shu, G.J. Davies, Phys. Status Solidi A 78, 595 (1983)

    Article  Google Scholar 

  3. J.H. Jensen, Molecular Modeling Basics (CRC Press, 2010)

    Google Scholar 

  4. F. Jensen, Introduction to Computational Chemistry, 2nd edn. (Wiley, New York, 2007)

    Google Scholar 

  5. J. Autschbach, J Chem. Phys. 136, 150902 (2012)

    Article  Google Scholar 

  6. P. Pyykkö, J. Desclaux, Acc. Chem. Res. 12, 276 (1979)

    Article  Google Scholar 

  7. M. Barysz, Y. Ishikawa, Relativistic Methods for Chemists. Challenges and Advances in Computational Chemistry and Physics (Springer, 2010)

    Google Scholar 

  8. C. Chang, M. Pelissier, P. Durand, Phys. Scr. 34, 394 (1986)

    Article  CAS  Google Scholar 

  9. E. van Lenthe, E.J. Baerends, J.G. Snijders, J. Chem. Phys. 99, 4597 (1993)

    Article  Google Scholar 

  10. E. van Lenthe, E.J. Baerends, J.G. Snijders, J. Chem. Phys. 101, 9783 (1994)

    Article  Google Scholar 

  11. E. van Lenthe, E.J. Baerends, J.G. Snijders, J. Chem. Phys. 105, 6505 (1996)

    Article  Google Scholar 

  12. M. Dolg, X. Cao, Chem. Rev. 112, 403 (2011)

    Article  Google Scholar 

  13. X. Cao, M. Dolg, WIREs Comput. Mo. Sci. 1, 200 (2011)

    Article  CAS  Google Scholar 

  14. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994)

    Article  Google Scholar 

  15. P.E. Blöchl, C.J. Först, J. Schimpl, Bull. Mater. Sci. 26, 33 (2003)

    Article  Google Scholar 

  16. J. Mortensen, L. Hansen, K.W. Jacobsen, Phys. Rev. B 71, 035109 (2005)

    Article  Google Scholar 

  17. J. Enkovaara, C. Rostgaard, J.J. Mortensen, J. Chen, M. Dulak, L. Ferrighi, J. Gavnholt, C. Glinsvad, V. Haikola, H.A. Hansen et al., J. Phys. 22, 253202 (2010)

    CAS  Google Scholar 

  18. J. Kohanoff, Electronic Structure Calculations for Solids and Molecules (Cambridge University Press, Cambridge, 2006)

    Google Scholar 

  19. W. Kohn, L.J. Sham, Phys. Rev. 140, 1133 (1965)

    Article  Google Scholar 

  20. J.P. Perdew, Phys. Rev. B 33, 8822 (1986)

    Article  Google Scholar 

  21. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  CAS  Google Scholar 

  22. S.H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 58, 1200 (1980)

    Article  CAS  Google Scholar 

  23. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 46, 6671 (1992)

    Article  CAS  Google Scholar 

  24. A.D. Becke, Phys. Rev. A 38, 3098 (1988)

    Article  CAS  Google Scholar 

  25. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)

    Article  CAS  Google Scholar 

  26. A. Dohn, N. Harrit, Structural Investigations of the Tetracyanoplatinate (II) Complex and its Oligomers, Using Electronic Structure Calculations, Emission Spectroscopy, and Solution X-ray Scattering (Copenhagen, Denmark, 2010)

    Google Scholar 

  27. K.G. Dyall, K. Fægri Jr, Chem. Phys. Lett. 174, 25 (1990)

    Article  CAS  Google Scholar 

  28. K.G. Dyall, J. Chem. Phys. 100, 2118 (1994)

    Article  CAS  Google Scholar 

  29. K.G. Dyall, Theor. Chem. Acc. 112, 403 (2004)

    Article  CAS  Google Scholar 

  30. K.G. Dyall, Theor. Chem. Acc. 115, 441 (2006)

    Article  CAS  Google Scholar 

  31. T.H. Dunning Jr, J. Chem. Phys. 90, 1007 (1989)

    Article  CAS  Google Scholar 

  32. F. Weigend, R. Ahlrichs, Physical chemistry. Chem. Phys. 7, 3297 (2005)

    CAS  Google Scholar 

  33. A. Schäfer, C. Huber, R. Ahlrichs, J. Chem. Phys. 100, 5829 (1994)

    Article  Google Scholar 

  34. D. Andrae, U. Haussermann, M. Dolg, H. Stoll, H. Preuss, Theor. Chim. Acta 77, 123 (1990)

    Article  CAS  Google Scholar 

  35. D. Figgen, K.A. Peterson, M. Dolg, H. Stoll, J. Chem. Phys. 130 (2009)

    Google Scholar 

  36. D. Paschoal, B.L. Marcial, J.F. Lopes, W.B. De Almeida, H.F. Dos Santos, J. Comput. Chem. 33, 2292 (2012)

    Article  CAS  Google Scholar 

  37. C. Heinemann, H. Schwarz, W. Koch, K.G. Dyall, J. Chem. Phys. 104, 12 (1996)

    Article  Google Scholar 

  38. C. Adamo, V.V. Barone, Theor. Chem. Acc. 105, 169 (2000)

    Article  CAS  Google Scholar 

  39. J.G. Snijders, J. Pyykkö, Chem. Phys. Lett. 75, 5 (1980)

    Article  CAS  Google Scholar 

  40. T. Ziegler, J.G. Snijders, E.J. Baerends, Chem. Phys. Lett. 75, 1 (1980)

    Article  CAS  Google Scholar 

  41. S.R. Bahn, K.W. Jacobsen, Comput. Sci. Eng. 4, 55 (2002)

    Article  Google Scholar 

  42. C. Peters, C.F. Eagen, Inorg. Chem. 15, 4 (1976)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asmus Ougaard Dohn .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dohn, A.O. (2015). Treating Relativistic Effects in Transition Metal Complexes. In: Transient Changes in Molecular Geometries and How to Model Them. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-18747-1_3

Download citation

Publish with us

Policies and ethics