Skip to main content

Abstract

As shown in Chap. 3, process-execution time is a fundamental measure in an EIS. Our risk-aware execution-time estimation method (Sect. 3.2.2) has demonstrated improved performance over static rule-based methods. However, in addition to performing real-time production scheduling, an EIS should also be able to carry out planning for the future. Therefore, accurate predictions of both process-execution time and process status are crucial for the development of an intelligent EIS. We propose new process-execution time-prediction and process status-prediction methods for an EIS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.-W. Scheer, M. Nüttgens, ARIS Architecture and Reference Models for Business Process Management (Springer, 2000)

    Book  Google Scholar 

  2. C.L. Dunn, J.O. Cherrington, A.S. Hollander, E.L. Denna, Enterprise Information Systems: A Pattern-Based Approach, vol. 3 (McGraw-Hill/Irwin Boston, 2005)

    Google Scholar 

  3. Q. Duan, J. Zeng, K. Chakrabarty, G. Dispoto, Real-time production scheduler for digital-print-service providers based on a dynamic incremental evolutionary algorithm. Accepted for publication in IEEE Trans. Autom. Sci. Eng. Available on IEEE Xplore as Early Access article, vol. PP, no. 99, pp. 1–15 (2014)

    Google Scholar 

  4. K. Chakrabarty, G. Dispoto, R. Bellamy, J. Zeng, The role of EDA in digital print automation and infrastructure optimization, in Proceedings of the International Conference on Computer-Aided Design (ICCAD) (2011), pp. 158–161

    Google Scholar 

  5. D.H. Kim, S. Mukhopadhyay, S.K. Lim, TSV-aware interconnect distribution models for prediction of delay and power consumption of 3-d stacked ICs. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 33(9), 1384–1395 (2014)

    Article  Google Scholar 

  6. E.-J. Chang, H.-K. Hsin, S.-Y. Lin, A.-Y. Wu, Path-congestion-aware adaptive routing with a contention prediction scheme for network-on-chip systems. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 33(1), 113–126 (2014)

    Article  Google Scholar 

  7. P. van Stralen, A. Pimentel, Fitness prediction techniques for scenario-based design space exploration. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 32(8), 1240–1253 (2013)

    Article  Google Scholar 

  8. R. Schneider, D. Goswami, S. Chakraborty, U. Bordoloi, P. Eles, Z. Peng, Quantifying notions of extensibility in flexray schedule synthesis. ACM Trans. Des. Autom. Electron. Syst. 19(4), 32:1–32:37 (2014)

    Google Scholar 

  9. A. Tenhiälö, M. Ketokivi, Order management in the customization-responsiveness squeeze. Decis. Sci. 43(1), 173–206 (2012)

    Article  Google Scholar 

  10. A. Scheer, F. Habermann, Enterprise resource planning: making ERP a success. Commun. ACM 43, 57–61 (2000)

    Article  Google Scholar 

  11. W. Lee, Y. Wang, D. Shin, N. Chang, M. Pedram, Optimizing the power delivery network in a smartphone platform. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 33(1), 36–49 (2014)

    Article  Google Scholar 

  12. S. Biswas, H. Wang, R.D.S. Blanton, Reducing test cost of integrated, heterogeneous systems using pass-fail test data analysis. ACM Trans. Des. Autom. Electron. Syst. 19(2), 20:1–20:23 (2014)

    Google Scholar 

  13. D.-C. Juan, S. Garg, D. Marculescu, Statistical peak temperature prediction and thermal yield improvement for 3d chip multiprocessors. ACM Trans. Des. Autom. Electron. Syst. 19(4), 39:1–39:23 (2014)

    Google Scholar 

  14. H. Kipphan, Handbook of Print Media: Technologies and Production Methods (Springer, New York, 2001), pp. 40–422

    Book  Google Scholar 

  15. M.A. Hall, Correlation-based feature selection for machine learning. Ph.D. dissertation, The University of Waikato (1999)

    Google Scholar 

  16. J.D. Musa, K. Okumoto, A logarithmic poisson execution time model for software reliability measurement, in Proceedings of the 7th International Conference on Software Engineering, ser. ICSE ’84 (IEEE Press, Piscataway, 1984), pp. 230–238

    Google Scholar 

  17. P. Bogdan, M. Kas, R. Marculescu, O. Mutlu, Quale: a quantum-leap inspired model for non-stationary analysis of noc traffic in chip multi-processors, in Proceedings of the 2010 Fourth ACM/IEEE International Symposium on Networks-on-Chip, ser. NOCS ’10 (IEEE Computer Society, Washington, DC, 2010), pp. 241–248

    Google Scholar 

  18. Z. Qian, P. Bogdan, G. Wei, C.-Y. Tsui, R. Marculescu, A traffic-aware adaptive routing algorithm on a highly reconfigurable network-on-chip architecture, in Proceedings of the Eighth IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis, ser. CODES+ISSS ’12 (ACM, New York, 2012), pp. 161–170

    Google Scholar 

  19. M. Xue, K.K. Droegemeier, V. Wong, The advanced regional prediction system (ARPS) – a multi-scale nonhydrostatic atmospheric simulation and prediction model. Part i: model dynamics and verification. Meteorol. Atmos. Phys. 75(3–4), 161–193 (2000)

    Google Scholar 

  20. R.M. Fujimoto, Parallel and distributed simulation, in Simulation Conference Proceedings, 1999 Winter, vol. 1 (IEEE, 1999), pp. 122–131

    Google Scholar 

  21. C. Gopinath, J.E. Sawyer, Exploring the learning from an enterprise simulation. J. Manage. Dev. 18(5), 477–489 (1999)

    Article  Google Scholar 

  22. F. Darema, Dynamic data driven applications systems: a new paradigm for application simulations and measurements, in Computational Science-ICCS 2004 (Springer, 2004), pp. 662–669

    Google Scholar 

  23. Z. Qian, D.-C. Juan, P. Bogdan, C.-Y. Tsui, D. Marculescu, R. Marculescu, Svr-noc: a performance analysis tool for network-on-chips using learning-based support vector regression model, in Proceedings of the Conference on Design, Automation and Test in Europe, ser. DATE ’13 (EDA Consortium, San Jose, 2013), pp. 354–357

    Google Scholar 

  24. D. Tetzlaff, S. Glesner, Intelligent prediction of execution times, in 2013 Second International Conference on Informatics and Applications (ICIA), Sept 2013, pp. 234–239.

    Google Scholar 

  25. S. Ravizza, J. Chen, J.A. Atkin, P. Stewart, E.K. Burke, Aircraft taxi time prediction: comparisons and insights. Appl. Soft Comput. 14(Part C, 0), pp. 397–406 (2014)

    Google Scholar 

  26. R.J. Klement, M. Allgäuer, S. Appold, K. Dieckmann, I. Ernst, U. Ganswindt, R. Holy, U. Nestle, M. Nevinny-Stickel, S. Semrau, F. Sterzing, A. Wittig, N. Andratschke, M. Guckenberger, Support vector machine-based prediction of local tumor control after stereotactic body radiation therapy for early-stage non-small cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys. (2014)

    Google Scholar 

  27. C.-H. Wu, J.-M. Ho, D. Lee, Travel-time prediction with support vector regression. IEEE Trans. Intell. Transp. Syst. 5(4), 276–281 (2004)

    Article  Google Scholar 

  28. J. Zeng, S. Jackson, I. Lin, M. Gustafson, E. Gustafson, R. Mitchell, Operations simulation of on-demand digital print, in IEEE 13th International Conference on Computer Science and Information Technology (2011)

    Google Scholar 

  29. A. Simitsis, P. Vassiliadis, T. Sellis, Optimizing etl processes in data warehouses, in Proceedings of the 21st International Conference on Data Engineering (2005), pp. 564–575

    Google Scholar 

  30. F. Ye, Z. Zhang, K. Chakrabarty, X. Gu, Board-level functional fault diagnosis using multikernel support vector machines and incremental learning. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 33(2), 279–290 (2014)

    Article  Google Scholar 

  31. F. Ye, Z. Zhang, K. Chakrabarty, X. Gu, Board-level functional fault diagnosis using artificial neural networks, support-vector machines, and weighted-majority voting. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 32(5), 723–736 (2013)

    Article  Google Scholar 

  32. Q. Duan, Real-time and data-driven operation optimization and knowledge discovery for an enterprise information system. Ph.D. dissertation, Duke University, Department of Electrical and Computer Engineering, Durham, 2014

    Google Scholar 

  33. J.C. Platt, Sequential minimal optimization: a fast algorithm for training support vector machines. Technical report, Microsoft Research (1998)

    Google Scholar 

  34. M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I.H. Witten, The weka data mining software: an update. SIGKDD Explor. 11(1) (2009). Available: http://www.cs.waikato.ac.nz/ml/weka/

  35. G.J. Huffman, Estimates of root-mean-square random error for finite samples of estimated precipitation. J. Appl. Meteorol. 36(9), 1191–1201 (1997)

    Article  Google Scholar 

  36. P.R. Halmos et al., The theory of unbiased estimation. Ann. Math. Stat. 17(1), 34–43 (1946)

    Article  MATH  MathSciNet  Google Scholar 

  37. K. Trivedi, Probability and Statistics with Reliability, Queuing and Computer Science Application, 2nd edn. (Wiley, New York, 2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Duan, Q., Chakrabarty, K., Zeng, J. (2015). Predictions of Process-Execution Time and Process-Execution Status. In: Data-Driven Optimization and Knowledge Discovery for an Enterprise Information System. Springer, Cham. https://doi.org/10.1007/978-3-319-18738-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18738-9_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18737-2

  • Online ISBN: 978-3-319-18738-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics