Skip to main content

Abstract

An enterprise information system (EIS) is an integrated data-applications platform characterized by diverse, heterogeneous, and distributed data sources. For many enterprises, a number of business processes still depend heavily on static rule-based methods and extensive human expertise. Enterprises are faced with the need for optimizing operation scheduling, improving resource utilization, discovering useful knowledge, and making data-driven decisions. This book is focused on real-time optimization and knowledge discovery that addresses workflow optimization, resource allocation, as well as data-driven predictions of process-execution times, order fulfillment, and enterprise service-level performance. In contrast to prior work on data analytics techniques for enterprise performance optimization, the emphasis here is on realizing scalable and real-time enterprise intelligence based on a combination of heterogeneous system simulation, combinatorial optimization, machine-learning algorithms, and statistical methods. In order to handle the increase in volume and diversity of demands, we first present a high-performance, scalable, and real-time production-scheduling algorithm for production automation based on an incremental genetic algorithm (IGA). The objective of this algorithm is to optimize the order dispatching sequence and balance resource utilization. Compared to prior work, this solution is scalable for a high volume of orders and it provides fast scheduling solutions for orders that require complex fulfillment procedures. Experimental results highlight its potential benefit in reducing production inefficiencies and enhancing the productivity of an enterprise. We next discuss analysis and prediction of different attributes involved in hierarchical components of an enterprise. We start from a study of the fundamental processes related to real-time prediction. Our process-execution time and process status prediction models integrate statistical methods with machine-learning algorithms. In addition to improved prediction accuracy compared to stand-alone machine-learning algorithms, it also performs a probabilistic estimation of the predicted status. An order generally consists of multiple series and parallel processes. We next introduce an order-fulfillment prediction model that combines advantages of multiple classification models by incorporating flexible decision-integration mechanisms. Experimental results show that adopting due dates recommended by the model can significantly reduce enterprise late-delivery ratio. Finally, we investigate service-level attributes that reflect the overall performance of an enterprise. We analyze and decompose time-series data into different components according to their hierarchical periodic nature, perform correlation analysis, and develop univariate prediction models for each component as well as multivariate models for correlated components. Predictions for the original time series are aggregated from the predictions of its components. In addition to a significant increase in mid-term prediction accuracy, this distributed modeling strategy also improves short-term time-series prediction accuracy. In summary, this book has led to a set of characterization, optimization, and prediction tools for an EIS to derive insightful knowledge from data and use them as guidance for production management. It is expected to provide solutions for enterprises to increase reconfigurability, accomplish more automated procedures, and obtain data-driven recommendations or effective decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L.D. Xu, Enterprise systems: state-of-the-art and future trends. IEEE Trans. Ind. Inform. 7, 630–640 (2011)

    Article  Google Scholar 

  2. J.H. Dunning, International Production and the Multinational Enterprise (RLE International Business), vol. 12 (Routledge, New York, 2013)

    Google Scholar 

  3. J. Chattratichat, J. Darlington, Y. Guo, S. Hedvall, M. Kohler, J. Syed, An architecture for distributed enterprise data mining, in Proceedings of the 7th International Conference on High-Performance Computing and Networking (1999), pp. 573–582

    Google Scholar 

  4. J.-P.M.-Flatin, S. Znaty, J.-P. Hubaux, A survey of distributed enterprise network and systems management paradigms. J. Netw. Syst. Manage. 7(1), 9–26 (1999)

    Google Scholar 

  5. C.L. Dunn, J.O. Cherrington, A.S. Hollander, E.L. Denna, Enterprise Information Systems: A Pattern-Based Approach, vol. 3 (McGraw-Hill/Irwin, Boston, 2005).

    Google Scholar 

  6. K. Beznosov, Engineering access control for distributed enterprise applications. Ph.D. dissertation, Florida International University, 2000

    Google Scholar 

  7. J. Zeng, S. Jackson, I. Lin, M. Gustafson, E. Gustafson, R. Mitchell, Operations simulation of on-demand digital print, in IEEE 13th International Conference on Computer Science and Information Technology (Springer, Berlin/Heidelberg, 2011)

    Google Scholar 

  8. J. Zeng, I.-J. Lin, E. Hoarau, G. Dispoto, Next-generation commercial print infrastructure: Gutenberg-Landa TCP/IP as cyber-physical system. J. Imaging Sci. Technol. 54(1), 1–6 (2010)

    Google Scholar 

  9. S. Zykov, Designing patterns to support heterogeneous enterprise systems lifecycle, in Software Engineering Conference in Russia (CEE-SECR), 2009 5th Central and Eastern European (Microsoft, Moscow, 2009), pp. 83–88

    Book  Google Scholar 

  10. K. Levi, A. Arsanjani, A goal-driven approach to enterprise component identification and specification. Commun. ACM 45(10), 45–52 (2002)

    Article  Google Scholar 

  11. A.W. Scheer, F. Abolhassan, W. Jost, Business Process Automation: ARIS in Practice (Springer, Berlin/Heidelberg/New York, 2004)

    Book  Google Scholar 

  12. P. Ramanathan, J. Stankovic, Scheduling algorithms and operating system support for real-time systems. Proc. IEEE 81(1), 55–67 (1994)

    Google Scholar 

  13. B. Azvine, Z. Cui, D. Nauck, B. Majeed, Real time business intelligence for the adaptive enterprise, in The 8th IEEE International Conference on and Enterprise Computing, E-Commerce, and E-Services, The 3rd IEEE International Conference on E-Commerce Technology, 2006 (2006), pp. 1–29

    Google Scholar 

  14. C. Kleissner, Data mining for the enterprise, in Proceedings of the Thirty-First Hawaii International Conference on System Sciences, 1998, Hawaii vol. 7 (1998), pp. 295–304

    Google Scholar 

  15. J.M. Hellerstein, M. Stonebraker, R. Caccia, Independent, open enterprise data integration. IEEE Data Eng. Bull. 22(1), 43–49 (1999)

    Google Scholar 

  16. J. Manyika, M. Chui, J. Bughin, B. Brown, R. Dobbs, C. Roxburgh, A.H. Byers, Big Data: The Next Frontier for Innovation, Competition and Productivity (McKinsey Global Institute, Washington, DC, 2001)

    Google Scholar 

  17. R. Buyya, J. Broberg, A. Goscinski, Cloud Computing: Principles and Paradigms (Wiley, New York, 2001)

    Google Scholar 

  18. P. Patel, A. Ranabahu, A. Sheth, Service level agreement in cloud computing, in ACM International Conference on Object Oriented Programming Systems Languages and Applications, Orlando (2009)

    Google Scholar 

  19. G.R. Andrews, Foundations of Multithreaded, Parallel and Distributed Programming (Addison Wesley, Reading, 2000)

    Google Scholar 

  20. F. Jammes, H. Smit, Service-oriented paradigms in industrial automation. IEEE Trans. Ind. Inform. 1(1), 62–70 (2005)

    Article  Google Scholar 

  21. J. Zeng, I.-J. Lin, E. Hoarau, G. Dispoto, Productivity analysis of print service providers. J. Imaging Sci. Technol. 54(6), 1–9 (2010)

    Article  Google Scholar 

  22. J. Spohrer, P.P. Maglio, J. Bailey, D. Gruhl, Steps toward a science of service systems. IEEE Comput. Soc. 40(1), 71–77 (2007)

    Article  Google Scholar 

  23. J. Zeng, I.-J. Lin, G. Dispoto, E. Hoarau, G. Beretta, On-demand digital print services: a new commercial print paradigm as an it service vertical, in Annual SRII Global Conference (2011), pp. 120–125

    Google Scholar 

  24. S. Karp, The future of print publishing and paid content, Publishing 2.0 blog. Tech. Rep. (2007), http://publishing2.com/2007/12/06/the-future-of-print-publishing-and-paid-content/.

  25. H. Kipphan, Handbook of Print Media: Technologies and Production Methods, (Springer, New York, 2001), no. 40–422

    Google Scholar 

  26. G.D. Silveira, D. Borenstein, F.S. Fogliatto, Mass customization: literature review and research directions. Int. J. Prod. Econ. 72(1), 1–13, (2001). [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0925527300000797

  27. R. Haupt, A survey of priority rule-based scheduling. Oper. Res. Spektr. 11(1), 3–16 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  28. S.P. Hoover, G.A. Gibson, The future of print and the digital printing revolution, in 31st International Conference on Imaging Science, Beijing (2010)

    Google Scholar 

  29. C. Özgven, L. Özbakir, Y. Yavuz, Mathematical models for job-shop scheduling problems with routing and process flexibility. Appl. Math. Model. 34, 1539–1548 (2010)

    Article  MathSciNet  Google Scholar 

  30. M. Agrawal, Q. Duan, K. Chakrabarty, J. Zeng, I.-J. Lin, G. Dispoto, Y.S. Lee, Digital print workflow optimization under due-dates, opportunity cost and resource constraints, in IEEE International Conference on Industrial Informatics, Caparica, Lisbon (2011)

    Google Scholar 

  31. B.L. Maccarthy, J. Liu, Addressing the gap in scheduling research: a review of optimization and heuristic methods in production scheduling. Int. J. Prod. Res. 31(1), 59–79 (1993)

    Article  Google Scholar 

  32. A. Tenhiälö, M. Ketokivi, Order management in the customization-responsiveness squeeze. Decis. Sci. 43(1), 173–206 (2012)

    Article  Google Scholar 

  33. J. Barton, D. Love, G. Taylor, Evaluating design implementation strategies using enterprise simulation. Int. J. Prod. Econ. 72(3), 285–299 (2001)

    Article  Google Scholar 

  34. L. Rabelo, M. Helal, A. Jones, H.-S. Min, Enterprise simulation: a hybrid system approach. Int. J. Comput. Integr. Manuf. 18(6), 498–508 (2005)

    Article  Google Scholar 

  35. C. Gopinath, J.E. Sawyer, Exploring the learning from an enterprise simulation. J. Manage. Dev. 18(5), 477–489 (1999)

    Article  Google Scholar 

  36. J.B. Jun, S.H. Jacobson, J.R. Swisher, Application of discrete-event simulation in health care clinics: a survey. J. Oper. Res. Soc. 50(2), 109–123 (1986)

    Article  Google Scholar 

  37. L. Rabelo, M. Helal, A. Jones, J. Min, Y.-J. Son, A. Deshmukh, New manufacturing modeling methodology: a hybrid approach to manufacturing enterprise simulation, in Proceedings of the 35th Conference on Winter Simulation: Driving Innovation, New Orleans (2003), pp. 1125–1133

    Google Scholar 

  38. R. Mielke, Applications for enterprise simulation. Simul. Conf. Proc. 2(2), 1490–1495 (1999)

    Google Scholar 

  39. D. Ouelhadj, S. Petrovic, A survey of dynamic scheduling in manufacturing systems. J. Sched. 12(4), 417–431 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  40. A. Scheer, F. Habermann, Enterprise resource planning: making ERP a success. Commun. ACM 43, 57–61 (2000)

    Article  Google Scholar 

  41. T. Ibaraki, N. Katoh, Resource Allocation Problems (MIT Press, Cambridge, 1988)

    MATH  Google Scholar 

  42. C. Bussler, Enterprise wide workflow management. IEEE Concurr. 7(3), 32–43 (1999)

    Article  Google Scholar 

  43. J. Burge, P. Ranganathan, J. Wiener, Cost-aware scheduling for heterogeneous enterprise machines, in 2007 IEEE International Conference on Cluster Computing, Austin (2007), pp. 481–487

    Google Scholar 

  44. Y.J. Zhang, K.B. Letaief, Adaptive resource allocation and scheduling in multiuser packet-based ofdm networks, in Proceedings of the IEEE International Conference on Communications (2004), pp. 2849–2953

    Google Scholar 

  45. M. Ergen, S. Coleri, P. Varaiya, Qos aware adaptive resource allocation techniques for fair scheduling in ofdma based broadband wireless access system. IEEE Trans. Broadcast. 49, 362–370, 2003

    Article  Google Scholar 

  46. W. Shen, Agent-based systems for intelligent manufacturing: a state-of-the-art survey. Knowl. Info. Syst. Int. J. 1, 129–156 (1999)

    Article  Google Scholar 

  47. M. Al-Fares, A. Loukissas, A. Vahdat, A scalable, commodity data center network architecture. SIGCOMM Comput. Commun. Rev. 38(4) 63–74 (2008)

    Article  Google Scholar 

  48. D. Kliazovich, P. Bouvry, S. Khan, Dens: data center energy-efficient network-aware scheduling, in 2010 IEEE/ACM International Conference on Green Computing and Communications (GreenCom) and International Conference on Cyber, Physical and Social Computing (CPSCom), Hangzhou (2010), pp. 69–75

    Google Scholar 

  49. M. Al-fares, S. Radhakrishnan, B. Raghavan, N. Huang, A. Vahdat, Hedera: dynamic flow scheduling for data center networks, in Proceedings of Networked Systems Design and Implementation (NSDI) Symposium, Boston (2010)

    Google Scholar 

  50. J.D. Moore, J.S. Chase, P. Ranganathan, R.K. Sharma, Making scheduling “cool”: temperature-aware workload placement in data centers, in USENIX Annual Technical Conference, General Track, Anaheim (2005), pp. 61–75

    Google Scholar 

  51. Y. Song, H. Wang, Y. Li, B. Feng, Y. Sun, Multi-tiered on-demand resource scheduling for VM-based data center, in Proceedings of the 2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid, ser. CCGRID ’09 (2009), pp. 148–155. [Online]. Available: http://dx.doi.org/10.1109/CCGRID.2009.11

  52. L. Wang, G. von Laszewski, J. Dayal, X. He, A. Younge, T. Furlani, Towards thermal aware workload scheduling in a data center, in 2009 10th International Symposium on Pervasive Systems, Algorithms, and Networks (ISPAN) (2009), pp. 116–122

    Google Scholar 

  53. U. Feyyad, Data mining and knowledge discovery: making sense out of data. IEEE Expert, 11(5), 20–25 (1996)

    Article  Google Scholar 

  54. D. O’Leary, Enterprise knowledge management. Computer 31(3), 54–61 (1998)

    Article  Google Scholar 

  55. J.A. Harding, A. Kusiak, M. Shahbaz, M. Srinivas, Data mining in manufacturing: a review. J. Manuf. Sci. Eng. 128(4), 969–976 (2005)

    Article  Google Scholar 

  56. N. Bolloju, M. Khalifa, E. Turban, Integrating knowledge management into enterprise environments for the next generation decision support. Decis. Support Syst. 33(2), 163–176 (2002)

    Article  Google Scholar 

  57. H. Aytug, S. Bhattacharyya, G. Koehler, J. Snowdon, A review of machine learning in scheduling. IEEE Trans. Eng. Manage. 41(2), 165–171 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Duan, Q., Chakrabarty, K., Zeng, J. (2015). Introduction. In: Data-Driven Optimization and Knowledge Discovery for an Enterprise Information System. Springer, Cham. https://doi.org/10.1007/978-3-319-18738-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18738-9_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18737-2

  • Online ISBN: 978-3-319-18738-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics