Forecasting Intra Day Load Curves Using Sparse Functional Regression
- 2 Citations
- 1.7k Downloads
Abstract
In this paper we provide a prediction method, the prediction box, based on a sparse learning process elaborated on very high dimensional information, which will be able to include new – potentially high dimensional – influential variables and adapt to different contexts of prediction. We elaborate and test this method in the setting of predicting the national French intra day load curve, over a period of time of 7 years on a large data basis including daily French electrical consumptions as well as many meteorological inputs, calendar statements and functional dictionaries. The prediction box incorporates a huge contextual information coming from the past, organizes it in a manageable way through the construction of a smart encyclopedia of scenarios, provides experts elaborating strategies of prediction by comparing the day at hand to referring scenarios extracted from the encyclopedia, and then harmonizes the different experts. More precisely, the prediction box is built using successive learning procedures: elaboration of a data base of historical scenarios organized on a high dimensional and functional learning of the intra day load curves, construction of expert forecasters using a retrieval information task among the scenarios, final aggregation of the experts. The results on the national French intra day load curves strongly show the benefits of using a sparse functional model to forecast the electricity consumption. They also appear to meet quite well with the business knowledge of consumption forecasters and even shed new lights on the domain.
Keywords
Ordinary Little Square Cloud Cover Meteorological Variable Load Curve Sparse ApproximationNotes
Acknowledgements
The authors thank RTE for the financial support through two industrial contracts, LPMA for hosting our researches, and Karine Tribouley for taking part of an earlier elaboration of this project.
References
- 1.Antoniadis, A., Brossat, X., Cugliari, J., & Poggi, J. M. (2010). Clustering functional data using wavelets. In Proceedings of the 19th international conference on computational statistics, COMPSTAT, Paris, 697–704.Google Scholar
- 2.Antoniadis, A., Brossat, X., Cugliari, J., & Poggi, J. M. (2012). Prévision d’un processus à valeurs fonctionnelles en présence de non stationnarités. Application à la consommation d’électricité. Journal de la Société; Française de Statistique, 153(2), 52–78.MathSciNetGoogle Scholar
- 3.Antoniadis, A., Paparoditis, E., & Sapatinas, T. (2006). A functional wavelet–kernel approach for time series prediction. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(5), 837–857.zbMATHMathSciNetCrossRefGoogle Scholar
- 4.Catoni, O. (2004). Statistical learning theory and stochastic optimization, volume 1851 of Lecture notes in mathematics. Berlin: Springer.Google Scholar
- 5.Chakhchoukh, Y., Panciatici, P., & Bondon, P. (2009). Robust estimation of SARIMA models: Application to short-term load forecasting. In IEEE workshop on statistical signal processing, CardiffGoogle Scholar
- 6.Cho, H., Goude, Y., Brossat, X., & Yao, Q. (2013). Modelling and forecasting daily electricity load curves: A hybrid approach. Journal of the American Statistical Association, 108(501), 7–21.zbMATHMathSciNetCrossRefGoogle Scholar
- 7.Dalalyan, A. S., & Tsybakov, A. B. (2008). Aggregation by exponentiel weighting, sharp oracle inequalities and sparsity. In COLT, Helsinki (pp. 97–111).Google Scholar
- 8.Devaine, M., Gaillard, P., Goude, Y., & Stoltz, G. (2012). Forecasting electricity consumption by aggregating specialized experts. Machine Learning, 90, 1–30.MathSciNetGoogle Scholar
- 9.Fan, S., & Hyndman, R. J. (2010). Density forecasting for long-term peak electricity demand. IEEE Transactions on Power Systems, 25(2), 1142–1152.CrossRefGoogle Scholar
- 10.Fan, S., & Hyndman, R. J. (2012). Short-term load forecasting based on a semi-parametric additive approach. IEEE Transactions on Power Systems, 27(1), 134–140.CrossRefGoogle Scholar
- 11.Juditsky, A. B., & Nemirovski, A. S. (2000). Functional aggregation for nonparametric regression. The Annals of Statistics, 28(3), 681–712.zbMATHMathSciNetCrossRefGoogle Scholar
- 12.Kerkyacharian, G., Mougeot, M., Picard, D., & Tribouley, K. (2009). Learning out of leaders. In Multiscale, nonlinear and adaptive approximation (Lecture notes in computer science). Berlin: Springer.Google Scholar
- 13.Lefieux, V. (2007). Modèles semi-paramétriques appliqués à la prévision des séries temporelles: cas de la consommation d’ électricité.Google Scholar
- 14.Marin, F. J., Garcia-Lagos, F., & Sandoval, F. (2002). Global model for short term load forecasting using artificial neural networks. IEE Proceedings – Generation, Transmission, and Distribution, 149, 121–125.Google Scholar
- 15.Mougeot, M., Picard, D., & Tribouley, K. (2012). Learning out of leaders: Regression for high dimension. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 74, 475–513.MathSciNetCrossRefGoogle Scholar
- 16.Mougeot, M., Picard, D., & Tribouley, K. (2014). LOL selection in high dimension. Computational Statistics and Data Analysis, 71, 743–757.MathSciNetCrossRefGoogle Scholar
- 17.Mougeot, M., Picard, D., Tribouley, K., Lefieux, V., & Maillard-Teyssier, L. (2013). Sparse approximation and fit of intraday load curves in a high dimentional framework. Advanced in Adaptive Data Analysis, 5. http://www.worldscientific.com/doi/pdf/10.1142/S1793536913500167.
- 18.Muñoz, A., Sánchez-Úbeda, E. F., Cruz, A., & Marin, J. (2010). Short-term forecasting in power systems: A guided tour. In Handbook of power systems II (pp. 129–160). Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
- 19.Poggi, J. M. (1994). Prévision non paramétrique de la consommation d’électricité. Revue de Statistique Appliquée, 42, 83–98.Google Scholar
- 20.Ramsay, J. O., & Silverman B. W. (2005). Functional data analysis. New York: Springer.CrossRefGoogle Scholar
- 21.Taylor, J. W. (2010). Triple seasonal methods for short-term electricity demand forecasting. European Journal of Operational Research, 204(1), 139–152.zbMATHCrossRefGoogle Scholar
- 22.Taylor, J. W. (2012). Short-term load forecasting with exponentially weighted methods. IEEE Transactions on Power Systems, 27, 458–464.CrossRefGoogle Scholar
- 23.Tsybakov, A. B. (2003). Optimal rates of aggregation. In COLT, Washington, DC (pp. 303–313).Google Scholar