Skip to main content

Forecasting Intra Day Load Curves Using Sparse Functional Regression

  • Conference paper
Modeling and Stochastic Learning for Forecasting in High Dimensions

Part of the book series: Lecture Notes in Statistics ((LNSP,volume 217))

Abstract

In this paper we provide a prediction method, the prediction box, based on a sparse learning process elaborated on very high dimensional information, which will be able to include new – potentially high dimensional – influential variables and adapt to different contexts of prediction. We elaborate and test this method in the setting of predicting the national French intra day load curve, over a period of time of 7 years on a large data basis including daily French electrical consumptions as well as many meteorological inputs, calendar statements and functional dictionaries. The prediction box incorporates a huge contextual information coming from the past, organizes it in a manageable way through the construction of a smart encyclopedia of scenarios, provides experts elaborating strategies of prediction by comparing the day at hand to referring scenarios extracted from the encyclopedia, and then harmonizes the different experts. More precisely, the prediction box is built using successive learning procedures: elaboration of a data base of historical scenarios organized on a high dimensional and functional learning of the intra day load curves, construction of expert forecasters using a retrieval information task among the scenarios, final aggregation of the experts. The results on the national French intra day load curves strongly show the benefits of using a sparse functional model to forecast the electricity consumption. They also appear to meet quite well with the business knowledge of consumption forecasters and even shed new lights on the domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Antoniadis, A., Brossat, X., Cugliari, J., & Poggi, J. M. (2010). Clustering functional data using wavelets. In Proceedings of the 19th international conference on computational statistics, COMPSTAT, Paris, 697–704.

    Google Scholar 

  2. Antoniadis, A., Brossat, X., Cugliari, J., & Poggi, J. M. (2012). Prévision d’un processus à valeurs fonctionnelles en présence de non stationnarités. Application à la consommation d’électricité. Journal de la Société; Française de Statistique, 153(2), 52–78.

    MathSciNet  Google Scholar 

  3. Antoniadis, A., Paparoditis, E., & Sapatinas, T. (2006). A functional wavelet–kernel approach for time series prediction. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(5), 837–857.

    Article  MATH  MathSciNet  Google Scholar 

  4. Catoni, O. (2004). Statistical learning theory and stochastic optimization, volume 1851 of Lecture notes in mathematics. Berlin: Springer.

    Google Scholar 

  5. Chakhchoukh, Y., Panciatici, P., & Bondon, P. (2009). Robust estimation of SARIMA models: Application to short-term load forecasting. In IEEE workshop on statistical signal processing, Cardiff

    Google Scholar 

  6. Cho, H., Goude, Y., Brossat, X., & Yao, Q. (2013). Modelling and forecasting daily electricity load curves: A hybrid approach. Journal of the American Statistical Association, 108(501), 7–21.

    Article  MATH  MathSciNet  Google Scholar 

  7. Dalalyan, A. S., & Tsybakov, A. B. (2008). Aggregation by exponentiel weighting, sharp oracle inequalities and sparsity. In COLT, Helsinki (pp. 97–111).

    Google Scholar 

  8. Devaine, M., Gaillard, P., Goude, Y., & Stoltz, G. (2012). Forecasting electricity consumption by aggregating specialized experts. Machine Learning, 90, 1–30.

    MathSciNet  Google Scholar 

  9. Fan, S., & Hyndman, R. J. (2010). Density forecasting for long-term peak electricity demand. IEEE Transactions on Power Systems, 25(2), 1142–1152.

    Article  Google Scholar 

  10. Fan, S., & Hyndman, R. J. (2012). Short-term load forecasting based on a semi-parametric additive approach. IEEE Transactions on Power Systems, 27(1), 134–140.

    Article  Google Scholar 

  11. Juditsky, A. B., & Nemirovski, A. S. (2000). Functional aggregation for nonparametric regression. The Annals of Statistics, 28(3), 681–712.

    Article  MATH  MathSciNet  Google Scholar 

  12. Kerkyacharian, G., Mougeot, M., Picard, D., & Tribouley, K. (2009). Learning out of leaders. In Multiscale, nonlinear and adaptive approximation (Lecture notes in computer science). Berlin: Springer.

    Google Scholar 

  13. Lefieux, V. (2007). Modèles semi-paramétriques appliqués à la prévision des séries temporelles: cas de la consommation d’ électricité.

    Google Scholar 

  14. Marin, F. J., Garcia-Lagos, F., & Sandoval, F. (2002). Global model for short term load forecasting using artificial neural networks. IEE Proceedings – Generation, Transmission, and Distribution, 149, 121–125.

    Google Scholar 

  15. Mougeot, M., Picard, D., & Tribouley, K. (2012). Learning out of leaders: Regression for high dimension. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 74, 475–513.

    Article  MathSciNet  Google Scholar 

  16. Mougeot, M., Picard, D., & Tribouley, K. (2014). LOL selection in high dimension. Computational Statistics and Data Analysis, 71, 743–757.

    Article  MathSciNet  Google Scholar 

  17. Mougeot, M., Picard, D., Tribouley, K., Lefieux, V., & Maillard-Teyssier, L. (2013). Sparse approximation and fit of intraday load curves in a high dimentional framework. Advanced in Adaptive Data Analysis, 5. http://www.worldscientific.com/doi/pdf/10.1142/S1793536913500167.

  18. Muñoz, A., Sánchez-Úbeda, E. F., Cruz, A., & Marin, J. (2010). Short-term forecasting in power systems: A guided tour. In Handbook of power systems II (pp. 129–160). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  19. Poggi, J. M. (1994). Prévision non paramétrique de la consommation d’électricité. Revue de Statistique Appliquée, 42, 83–98.

    Google Scholar 

  20. Ramsay, J. O., & Silverman B. W. (2005). Functional data analysis. New York: Springer.

    Book  Google Scholar 

  21. Taylor, J. W. (2010). Triple seasonal methods for short-term electricity demand forecasting. European Journal of Operational Research, 204(1), 139–152.

    Article  MATH  Google Scholar 

  22. Taylor, J. W. (2012). Short-term load forecasting with exponentially weighted methods. IEEE Transactions on Power Systems, 27, 458–464.

    Article  Google Scholar 

  23. Tsybakov, A. B. (2003). Optimal rates of aggregation. In COLT, Washington, DC (pp. 303–313).

    Google Scholar 

Download references

Acknowledgements

The authors thank RTE for the financial support through two industrial contracts, LPMA for hosting our researches, and Karine Tribouley for taking part of an earlier elaboration of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathilde Mougeot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Mougeot, M., Picard, D., Lefieux, V., Maillard-Teyssier, L. (2015). Forecasting Intra Day Load Curves Using Sparse Functional Regression. In: Antoniadis, A., Poggi, JM., Brossat, X. (eds) Modeling and Stochastic Learning for Forecasting in High Dimensions. Lecture Notes in Statistics(), vol 217. Springer, Cham. https://doi.org/10.1007/978-3-319-18732-7_9

Download citation

Publish with us

Policies and ethics