Confidence Intervals and Tests for High-Dimensional Models: A Compact Review
Conference paper
- 1.8k Downloads
Abstract
We present a compact review of methods for constructing tests and confidence intervals in high-dimensional models. Links to theory, finite sample performance results and software allows to obtain a “quick” but sufficiently deep overview for applying the procedures.
Keywords
Multi Sample Sample Splitting Stability Selection Construct Confidence Interval Ridge Estimator
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
- 1.Benjamini, Y., & Yekutieli, D. (2001). The control of the false discovery rate in multiple testing under dependency. Annals of Statistics, 29, 1165–1188.zbMATHMathSciNetCrossRefGoogle Scholar
- 2.Benjamini, Y., & Yekutieli, D. (2005). False discovery rate-adjusted multiple confidence intervals for selected parameters. Journal of the American Statistical Association, 100, 71–81.zbMATHMathSciNetCrossRefGoogle Scholar
- 3.Bühlmann, P. (2013). Statistical significance in high-dimensional linear models. Bernoulli, 19, 1212–1242.zbMATHMathSciNetCrossRefGoogle Scholar
- 4.Bühlmann, P., & Mandozzi, J. (2013). High-dimensional variable screening and bias in subsequent inference, with an empirical comparison. Computational Statistics. Published online doi: 10.1007/s00180-013-0436-3.
- 5.Bühlmann, P., Meier, L., & Kalisch, M. (2014). High-dimensional statistics with a view towards applications in biology. Annual Review of Statistics and Its Applications, 1, 255–278.CrossRefGoogle Scholar
- 6.Bühlmann, P., & van de Geer, S. (2011). Statistics for high-dimensional data: Methods, theory and applications. Heidelberg/New York: Springer.CrossRefGoogle Scholar
- 7.Chatterjee, A., & Lahiri, S. (2013). Rates of convergence of the adaptive LASSO estimators to the oracle distribution and higher order refinements by the bootstrap. Annals of Statistics, 41, 1232–1259.zbMATHMathSciNetCrossRefGoogle Scholar
- 8.Dezeure, R., Bühlmann, P., Meier, L., & Meinshausen, N. (2014). High-dimensional inference: Confidence intervals, p-values and software hdi. Preprint arXiv:1408.4026.Google Scholar
- 9.Diaconis, P., & Freedman, D. (1986). On the consistency of Bayes estimates (with discussion). Annals of Statistics, 14, 1–63.zbMATHMathSciNetCrossRefGoogle Scholar
- 10.Javanmard, A., & Montanari, A. (2013). Confidence intervals and hypothesis testing for high-dimensional regression. arXiv:1306.3171.Google Scholar
- 11.Li, K.-C. (1989). Honest confidence regions for nonparametric regression. Annals of Statistics, 17, 1001–1008.zbMATHMathSciNetCrossRefGoogle Scholar
- 12.Liu, H., & Yu, B. (2013). Asymptotic properties of lasso+mls and lasso+ridge in sparse high-dimensional linear regression. arXiv:1306.5505.Google Scholar
- 13.Lockhart, R., Taylor, J., Tibshirani, R., & Tibshirani, R. (2014). A significance test for the Lasso. Annals of Statistics, 42(2), 413–468.zbMATHMathSciNetCrossRefGoogle Scholar
- 14.Mandozzi, J., & Bühlmann, P. (2013). Hierarchical testing in the high-dimensional setting with correlated variables. arXiv:1312.5556.Google Scholar
- 15.McCullagh, P., & Nelder, J. (1989). Generalized linear models (2nd ed.). London: Chapman & Hall.zbMATHCrossRefGoogle Scholar
- 16.Meier, L. (2013). hdi: High-dimensional inference. R package version 0.0-1/r2.Google Scholar
- 17.Meinshausen, N. (2013). Assumption-free confidence intervals for groups of variables in sparse high-dimensional regression. arXiv:1309.3489.Google Scholar
- 18.Meinshausen, N., & Bühlmann, P. (2006). High-dimensional graphs and variable selection with the Lasso. Annals of Statistics, 34, 1436–1462.zbMATHMathSciNetCrossRefGoogle Scholar
- 19.Meinshausen, N., & Bühlmann, P. (2010). Stability selection (with discussion). Journal of the Royal Statistical Society Series B, 72, 417–473.CrossRefGoogle Scholar
- 20.Meinshausen, N., Meier, L., & Bühlmann, P. (2009). P-values for high-dimensional regression. Journal of the American Statistical Association, 104, 1671–1681.zbMATHMathSciNetCrossRefGoogle Scholar
- 21.Reid, S., Tibshirani, R., & Friedman, J. (2013). A study of error variance estimation in Lasso regression. arXiv:1311.5274.Google Scholar
- 22.Shao, J., & Deng, X. (2012). Estimation in high-dimensional linear models with deterministic design matrices. Annals of Statistics, 40, 812–831.zbMATHMathSciNetCrossRefGoogle Scholar
- 23.Sun, T., & Zhang, C.-H. (2012). Scaled sparse linear regression. Biometrika, 99, 879–898.zbMATHMathSciNetCrossRefGoogle Scholar
- 24.van de Geer, S., Bühlmann, P., Ritov, Y., & Dezeure, R. (2014). On asymptotically optimal confidence regions and tests for high-dimensional models. Annals of Statistics, 42(3), 1166–1202.zbMATHMathSciNetCrossRefGoogle Scholar
- 25.Wasserman, L., & Roeder, K. (2009). High dimensional variable selection. Annals of Statistics, 37, 2178–2201.zbMATHMathSciNetCrossRefGoogle Scholar
- 26.Zhang, C.-H., & Zhang, S. (2014). Confidence intervals for low-dimensional parameters in high-dimensional linear models. Journal of the Royal Statistical Society Series B, 76, 217–242.CrossRefGoogle Scholar
Copyright information
© Springer International Publishing Switzerland 2015