Skip to main content

Space-Time Trajectories of Wind Power Generation: Parametrized Precision Matrices Under a Gaussian Copula Approach

  • Conference paper
Modeling and Stochastic Learning for Forecasting in High Dimensions

Part of the book series: Lecture Notes in Statistics ((LNSP,volume 217))

Abstract

Emphasis is placed on generating space-time trajectories of wind power generation, consisting of paths sampled from high-dimensional joint predictive densities, describing wind power generation at a number of contiguous locations and successive lead times. A modelling approach taking advantage of the sparsity of precision matrices is introduced for the description of the underlying space-time dependence structure. The proposed parametrization of the dependence structure accounts for important process characteristics such as lead-time-dependent conditional precisions and direction-dependent cross-correlations. Estimation is performed in a maximum likelihood framework. Based on a test case application in Denmark, with spatial dependencies over 15 areas and temporal ones for 43 hourly lead times (hence, for a dimension of nā€‰=ā€‰645), it is shown that accounting for space-time effects is crucial for generating skilful trajectories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ackermann, T., etĀ al. (2005). Wind power in power systems. NewĀ York: Wiley.

    BookĀ  Google ScholarĀ 

  2. Bernardo, J.Ā M. (1979). Expected information as expected utility. The Annals of Statistics, 7(3), 686ā€“690.

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  3. Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal Statistical Society. Series B, 36, 192ā€“236.

    MATHĀ  MathSciNetĀ  Google ScholarĀ 

  4. Bessa, R.Ā J., Matos, M.Ā A., Costa, I.Ā C., Bremermann, L., Franchin, I.Ā G., Pestana, R., Machado, N., Waldl, H.Ā P., & Wichmann, C. (2012). Reserve setting and steady-state security assessment using wind power uncertainty forecast: A case study. IEEE Transactions on Sustainable Energy, 3, 827ā€“836.

    ArticleĀ  Google ScholarĀ 

  5. Bessa, R.Ā J., Miranda, V., Botterud, A., Zhou, Z., & Wang, J. (2012). Time-adaptive quantile-copula for wind power probabilistic forecasting. Renewable Energy, 40(1), 29ā€“39.

    ArticleĀ  Google ScholarĀ 

  6. Botterud, A., Zhou, Z., Wang, J., Bessa, R.Ā J., Keko, H., Sumaili, J., & Miranda, V. (2012). Wind power trading under uncertainty in LMP markets. IEEE Transactions on Power Systems, 27(2), 894ā€“903.

    ArticleĀ  Google ScholarĀ 

  7. Botterud, A., Zhou, Z., Wang, J., Sumaili, J., Keko, H., Mendes, J., Bessa, R.Ā J., & Miranda, V. (2013). Demand dispatch and probabilistic wind power forecasting in unit commitment and economic dispatch: A case study of Illinois. IEEE Transactions on Sustainable Energy, 4(1), 250ā€“261.

    ArticleĀ  Google ScholarĀ 

  8. Brƶcker, J., & Smith, L.Ā A. (2007). Scoring probabilistic forecasts: The importance of being proper. Weather and Forecasting, 22(2), 382ā€“388.

    ArticleĀ  Google ScholarĀ 

  9. Castronuovo, E.Ā D., SĆ”nchez, I., Usaola, J., Bessa, R., Matos, M., Costa, I.Ā C., Bremermann, L., Lugaro, J., & Kariniotakis, G. (2013). An integrated approach for optimal coordination of wind power and hydro pumping storage. Wind Energy, 17(6), 829ā€“852. Available online.

    Google ScholarĀ 

  10. Costa, A., Crespo, A., Navarro, J., Lizcano, G., Madsen, H., & Feitosa, E. (2008). A review on the young history of the wind power short-term prediction. Renewable & Sustainable Energy Reviews, 12(6), 1725ā€“1744.

    ArticleĀ  Google ScholarĀ 

  11. Diaz, G. (2013). A note on the multivariate Archimedian dependence structure in small wind generation sites. Wind Energy, 17(8), 1287ā€“1295. Available online (doi:10.1002/we.1633).

    Google ScholarĀ 

  12. Diebold, F.Ā X., & Mariano, R.Ā S. (1995). Comparing predictive accuracy. Journal of Business & Economic Statistics, 13(3), 253ā€“263.

    Google ScholarĀ 

  13. Genest, C., & Favre, A.-C. (2007). Everything you always wanted to know about copula modeling but were afraid to ask. Journal of Hydrologic Engineering, 12(4), 347ā€“368.

    ArticleĀ  Google ScholarĀ 

  14. Giebel, G., Brownsword, R., Kariniotakis, G., Denhard, M., & Draxl, C. (2011). The state-of-the-art in short-term prediction of wind powerā€“A literature overview (2nd ed.). Technical report, Technical University of Denmark.

    Google ScholarĀ 

  15. Girard, R., & Allard, D. (2012). Spatio-temporal propagation of wind power prediction errors. Wind Energy, 16(7), 999ā€“1012.

    ArticleĀ  Google ScholarĀ 

  16. Gneiting, T. (2008). Editorial: Probabilistic forecasting. Journal of the Royal Statistical Society: Series A, 171(2), 319ā€“321.

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  17. Gneiting, T., & Raftery, A.Ā E. (2007). Strictly proper scoring rules, prediction, and estimation. Journal of the American Statistical Association, 102(477), 359ā€“378.

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  18. Gneiting, T., Stanberry, L.Ā I., Grimit, E.Ā P., Held, L., & Johnson, N.Ā A. (2008). Assessing probabilistic forecasts of multivariate quantities, with an application to ensemble predictions of surface winds. Test, 17(2), 211ā€“235.

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  19. Hafner, C.Ā M., & Manner, H. (2012). Conditional prediction intervals of wind power generation. Journal of Applied Econometrics, 27(2), 269ā€“295.

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  20. Hagspiel, S., Papaemannouil, A., Schmid, M., & Andersson, G. (2012). Copula-based modeling of stochastic wind power in Europe and implications for the Swiss power grid. Applied Energy, 96, 33ā€“44.

    ArticleĀ  Google ScholarĀ 

  21. Hofert, M., MƤchler, M., & Mcneil, A.Ā J. (2012). Likelihood inference for archimedean copulas in high dimensions under known margins. Journal of Multivariate Analysis, 110, 133ā€“150.

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  22. Jeon, J., & Taylor, J.Ā W. (2012). Using conditional kernel density estimation for wind power density forecasting. Journal of the American Statistical Association, 107(497), 66ā€“79.

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  23. Jones, L., & Clark, C. (2011). Wind integration ā€“ A survey of global views of grid operators. In Proceedings of the 10th international workshop on large-scale integration of wind power into power systems, Aarhus.

    Google ScholarĀ 

  24. Kyung, M., & Ghosh, S.Ā K. (2010). Maximum likelihood estimation for directional conditionally autoregressive models. Journal of Statistical Planning and Inference, 140(11), 3160ā€“3179.

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  25. Lindgren, F., Rue, H., & Lindstrƶm, J. (2011). An explicit link between gaussian fields and gaussian markov random fields: The stochastic partial differential equation approach. Journal of the Royal Statistical Society: Series B, 73(4), 423ā€“498.

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  26. Louie, H. (2014). Evaluation of bivariate archimedean and elliptical copulas to model wind power dependency structures. Wind Energy, 17(2), 225ā€“240.

    ArticleĀ  Google ScholarĀ 

  27. Madsen, H., & Thyregod, P. (2011). Introduction to general and generalized linear models. Boca Raton: Chapman & Hall/CRC.

    MATHĀ  Google ScholarĀ 

  28. Mƶller, A., Lenkoski, A., & Thorarinsdottir, T.Ā L. (2013). Multivariate probabilistic forecasting using bayesian model averaging and copulas. Quarterly Journal of the Royal Meteorological Society, 139, 982ā€“991.

    ArticleĀ  Google ScholarĀ 

  29. Nielsen, H.Aa., Nielsen, T.Ā S., & Madsen, H. (2011). An overview of wind power forecasts types and their use in large-scale integration of wind power. In Proceedings of the 10th international workshop on large-scale integration of wind power into power systems, Aarhus.

    Google ScholarĀ 

  30. Ortega-Vazquez, M.Ā A., & Kirschen, D.Ā S. (2010). Assessing the impact of wind power generation on operating costs. IEEE Transactions on Smart Grid, 1(3), 295ā€“301.

    ArticleĀ  Google ScholarĀ 

  31. Papaefthymiou, G., & Kurowicka, D. (2009). Using copulas for modeling stochastic dependence in power system uncertainty analysis. IEEE Transactions on Power Systems, 24(1), 40ā€“49.

    ArticleĀ  Google ScholarĀ 

  32. Papavasiliou, A., & Oren, S.Ā S. (2013). Multiarea stochastic unit commitment for high wind penetration in a transmission constrained network. Operations Research, 61, 578ā€“592.

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  33. Pinson, P. (2013). Wind energy: Forecasting challenges for its optimal management. Statistical Science, 28(4), 564ā€“585.

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  34. Pinson, P., & Girard, R. (2012). Evaluating the quality of scenarios of short-term wind power generation. Applied Energy, 96, 12ā€“20.

    ArticleĀ  Google ScholarĀ 

  35. Pinson, P., & Kariniotakis, G.Ā N. (2010). Conditional prediction intervals of wind power generation. IEEE Transactions on Power Systems, 25(4), 1845ā€“1856.

    ArticleĀ  Google ScholarĀ 

  36. Pinson, P., Madsen, H., Aa Nielsen, H., Papaefthymiou, G., & Klƶckl, B. (2009). From probabilistic forecasts to statistical scenarios of short-term wind power production. Wind Energy, 12(1), 51ā€“62.

    ArticleĀ  Google ScholarĀ 

  37. Pinson, P., Nielsen, H.Ā A., MĆøller, J.Ā K., Madsen, H., & Kariniotakis, G.Ā N. (2007). Non-parametric probabilistic forecasts of wind power: Required properties and evaluation. Wind Energy, 10(6), 497ā€“516.

    ArticleĀ  Google ScholarĀ 

  38. Pinson, P., & Tastu, J. (2013). Discrimination ability of the Energy score. Technical report, Technical University of Denmark.

    Google ScholarĀ 

  39. Rue, H., & Held, L. (2005). Gaussian Markov random fields: Theory and applications, vol.Ā 104. Boca Raton: Chapman & Hall.

    Google ScholarĀ 

  40. Rue, H., & Tjelmeland, H. (2002). Fitting gaussian markov random fields to gaussian fields. Scandinavian Journal of Statistics, 29(1), 31ā€“49.

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  41. Simpson, D., Lindgren, F., & Rue, H. (2012). In order to make spatial statistics computationally feasible, we need to forget about the covariance function. Environmetrics, 23(1), 65ā€“74.

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  42. Sklar, M. (1959). Fonctions de rƩpartition Ơ n dimensions et leurs marges. UniversitƩ Paris 8.

    Google ScholarĀ 

  43. Tastu, J., Pinson, P., & Madsen, H. (2010). Multivariate conditional parametric models for a spatiotemporal analysis of short-term wind power forecast errors. In Scientific proceedings of the European wind energy conference, Warsaw (pp.Ā 77ā€“81).

    Google ScholarĀ 

Download references

Acknowledgements

The authors were partly supported by the EU Commission through the project SafeWind (ENK7-CT2008-213740), which is hereby acknowledged. Pierre Pinson was additionally supported by the Danish Strategic Research Council under ā€˜5sā€™ā€“Future Electricity Markets (12-132636/DSF). The authors are grateful to Energinet.dk, the transmission system operator in Denmark, for providing the observed power data used in this paper, and to ENFOR A/S for generating the point forecasts of wind power generation used as input. Finally, reviewers and editors are acknowledged for their comments and suggestions on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julija Tastu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Tastu, J., Pinson, P., Madsen, H. (2015). Space-Time Trajectories of Wind Power Generation: Parametrized Precision Matrices Under a Gaussian Copula Approach. In: Antoniadis, A., Poggi, JM., Brossat, X. (eds) Modeling and Stochastic Learning for Forecasting in High Dimensions. Lecture Notes in Statistics(), vol 217. Springer, Cham. https://doi.org/10.1007/978-3-319-18732-7_14

Download citation

Publish with us

Policies and ethics