Advertisement

Time Series Prediction via Aggregation: An Oracle Bound Including Numerical Cost

  • Andres Sanchez-PerezEmail author
Conference paper
  • 1.7k Downloads
Part of the Lecture Notes in Statistics book series (LNS, volume 217)

Abstract

We address the problem of forecasting a time series meeting the Causal Bernoulli Shift model, using a parametric set of predictors. The aggregation technique provides a predictor with well established and quite satisfying theoretical properties expressed by an oracle inequality for the prediction risk. The numerical computation of the aggregated predictor usually relies on a Markov chain Monte Carlo method whose convergence should be evaluated. In particular, it is crucial to bound the number of simulations needed to achieve a numerical precision of the same order as the prediction risk. In this direction we present a fairly general result which can be seen as an oracle inequality including the numerical cost of the predictor computation. The numerical cost appears by letting the oracle inequality depend on the number of simulations required in the Monte Carlo approximation. Some numerical experiments are then carried out to support our findings.

Keywords

Oracle Inequalities Markov Chain Monte Carlo (MCMC) MCMC Method Gibbs Estimator MCMC Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The author is specially thankful to François Roueff, Christophe Giraud, Peter Weyer-Brown and the two referees for their extremely careful readings and highly pertinent remarks which substantially improved the paper. This work has been partially supported by the Conseil régional d’Île-de-France under a doctoral allowance of its program Réseau de Recherche Doctoral en Mathématiques de l’Île de France (RDM-IdF) for the period 2012–2015 and by the Labex LMH (ANR-11-IDEX-003-02).

References

  1. 1.
    Alquier, P., & Li, X. (2012). Prediction of quantiles by statistical learning and application to GDP forecasting. In J.-G. Ganascia, P. Lenca, & J.-M. Petit (Eds.), Discovery science (Volume 7569 of Lecture notes in computer science, pp. 22–36). Berlin/Heidelberg: Springer.Google Scholar
  2. 2.
    Alquier, P., & Wintenberger, O. (2012). Model selection for weakly dependent time series forecasting. Bernoulli, 18(3), 883–913.zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Andrieu, C., & Doucet, A. (1999). An improved method for uniform simulation of stable minimum phase real ARMA (p,q) processes. IEEE Signal Processing Letters, 6(6), 142–144.CrossRefGoogle Scholar
  4. 4.
    Atchadé, Y. F. (2006). An adaptive version for the Metropolis adjusted Langevin algorithm with a truncated drift. Methodology and Computing in Applied Probability, 8(2), 235–254.zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Audibert, J.-Y. (2004). PAC-bayesian statistical learning theory. PhD thesis, Université Pierre et Marie Curie-Paris VI.Google Scholar
  6. 6.
    Beadle, E. R., & Djurić, P. M. (1999). Uniform random parameter generation of stable minimum-phase real ARMA (p,q) processes. IEEE Signal Processing Letters, 4(9), 259–261.CrossRefGoogle Scholar
  7. 7.
    Brockwell, P. J., & Davis, R. A. (2006). Time series: Theory and methods (Springer series in statistics). New York: Springer. Reprint of the second (1991) edition.Google Scholar
  8. 8.
    Catoni, O. (2004). Statistical learning theory and stochastic optimization (Volume 1851 of Lecture notes in mathematics). Berlin: Springer. Lecture notes from the 31st Summer School on Probability Theory held in Saint-Flour, 8–25 July 2001.Google Scholar
  9. 9.
    Cesa-Bianchi, N., & Lugosi, G. (2006). Prediction, learning, and games. Cambridge: Cambridge University Press.zbMATHCrossRefGoogle Scholar
  10. 10.
    Coulon-Prieur, C., & Doukhan, P. (2000). A triangular central limit theorem under a new weak dependence condition. Statistics and Probability Letters, 47(1), 61–68.zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Dalalyan, A. S., & Tsybakov, A. B. (2008). Aggregation by exponential weighting, sharp PAC-bayesian bounds and sparsity. Machine Learning, 72(1–2), 39–61.CrossRefGoogle Scholar
  12. 12.
    Dedecker, J., Doukhan, P., Lang, G., León R, J. R., Louhichi, S., & Prieur, C. (2007). Weak dependence: With examples and applications (Volume 190 of Lecture notes in statistics). New York: Springer.Google Scholar
  13. 13.
    Dedecker, J., & Prieur, C. (2005). New dependence coefficients. Examples and applications to statistics. Probability Theory and Related Fields, 132(2), 203–236.zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Künsch, H. R. (1995). A note on causal solutions for locally stationary AR-processes. Note from ETH Zürich, available on line here: ftp://ftp.stat.math.ethz.ch/U/hkuensch/localstat-ar.pdf.
  15. 15.
    Łatuszyński, K., Miasojedow, B., & Niemiro, W. (2013). Nonasymptotic bounds on the estimation error of MCMC algorithms. Bernoulli, 19, 2033–2066.zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Łatuszyński, K., & Niemiro, W. (2011). Rigorous confidence bounds for MCMC under a geometric drift condition. Journal of Complexity, 27(1), 23–38.zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Leung, G., & Barron, A. R. (2006). Information theory and mixing least-squares regressions. IEEE Transactions on Information Theory, 52(8), 3396–3410.zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Mengersen, K. L., & Tweedie, R. L. (1996). Rates of convergence of the Hastings and Metropolis algorithms. The Annals of Statistics, 24(1), 101–121.zbMATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Moulines, E., Priouret, P., & Roueff, F. (2005). On recursive estimation for time varying autoregressive processes. The Annals of Statistics, 33(6), 2610–2654.zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Rio, E. (2000). Inégalités de Hoeffding pour les fonctions lipschitziennes de suites dépendantes. Comptes Rendus de l’Academie des Sciences Paris Series I Mathematics, 330(10), 905–908.zbMATHMathSciNetGoogle Scholar
  21. 21.
    Roberts, G. O., & Rosenthal, J. S. (2004). General state space Markov chains and MCMC algorithms. Probability Surveys, 1, 20–71.zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institut Mines-Télécom; Télécom ParisTech; CNRS LTCI Télécom ParisTechParisFrance

Personalised recommendations