Spot Volatility Estimation for High-Frequency Data: Adaptive Estimation in Practice
- 1.7k Downloads
Abstract
We develop further the spot volatility estimator introduced in Hoffmann et al. (Ann Inst H Poincaré (B) Probab Stat 48(4):1186–1216, 2012) from a practical point of view and make it applicable to the analysis of high-frequency financial data. In a first part, we adjust the estimator substantially in order to achieve good finite sample performance and to overcome difficulties arising from violations of the additive microstructure noise model (e.g. jumps, rounding errors). These modifications are justified by simulations. The second part is devoted to investigate the behavior of volatility in response to macroeconomic events. We give evidence that the spot volatility of Euro-BUND futures is considerably higher during press conferences of the European Central Bank. As an outlook, we present an estimator for the spot covolatility of two different prices.
Keywords
Wavelet Coefficient European Central Bank Microstructure Effect Mean Integrate Square Error Heston ModelNotes
Acknowledgements
Support of DFG/SNF-Grant FOR 916, DFG postdoctoral fellowship SCHM 2807/1-1, and Volkswagen Foundation is gratefully acknowledged. We appreciate the help of CRC 649 “Economic Risk” for providing us with access to Eurex database. Parts of this work are taken from the PhD thesis Schmidt-Hieber [48]. We thank Marc Hoffmann, Markus Reiß, Markus Bibinger, and an anonymous referee for many helpful remarks and suggestions.
References
- 1.Ait-Sahalia, Y., & Jacod, J. (2009). Testing for jumps in a discretely observed process. The Annals of Statistics, 37, 184–222.zbMATHMathSciNetCrossRefGoogle Scholar
- 2.Ait-Sahalia, Y., & Yu, J. (2009). High frequency market microstructure noise estimates and liquidity measures. The Annals of Applied Statistics, 3, 422–457.zbMATHMathSciNetCrossRefGoogle Scholar
- 3.Ait-Sahalia, Y., Mykland, P. A., & Zhang, L. (2005). How often to sample a continuous-time process in the presence of market microstructure noise. The Review of Financial Studies, 18, 351–416.CrossRefGoogle Scholar
- 4.Ait-Sahalia, Y., Fan, J., & Xiu, D. (2010). High-frequency covariance estimates with noisy and asynchronous financial data. Journal of the American Statistical Association, 105, 1504–1517.MathSciNetCrossRefGoogle Scholar
- 5.Ait-Sahalia, Y., Jacod, J., & Li, J. (2012). Testing for jumps in noisy high frequency data. Journal of Econometrics, 168, 207–222.MathSciNetCrossRefGoogle Scholar
- 6.Andersen, T. G., & Bollerslev, T. (1998). Deutsche Mark-Dollar volatility: Intraday activity patterns, macroeconomic announcements, and longer run dependencies. The Journal of Finance, 53, 219–265.CrossRefGoogle Scholar
- 7.Autin, F., Freyermuth, J. M., & von Sachs, R. (2011). Ideal denoising within a family of tree-structured wavelet estimators. The Electronic Journal of Statistics, 5, 829–855.zbMATHCrossRefGoogle Scholar
- 8.Bandi, F., & Russell, J. (2008). Microstructure noise, realized variance, and optimal sampling. The Review of Economic Studies, 75, 339–369.zbMATHMathSciNetCrossRefGoogle Scholar
- 9.Barndorff-Nielsen, O. E., Hansen, P. R., Lunde, A., & Stephard, N. (2008). Designing realised kernels to measure the ex-post variation of equity prices in the presence of noise. Econometrica, 76(6), 1481–1536.zbMATHMathSciNetCrossRefGoogle Scholar
- 10.Barndorff-Nielsen, O. E., Hansen, P. R., Lunde, A., & Shephard, N. (2011). Multivariate realised kernels: Consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous trading. Journal of Econometrics, 162, 149–169.MathSciNetCrossRefGoogle Scholar
- 11.Bibinger, M. (2011). Efficient covariance estimation for asynchronous noisy high-frequency data. Scandinavian Journal of Statistics, 38, 23–45.zbMATHMathSciNetCrossRefGoogle Scholar
- 12.Bollerslev, T., & Todorov, V. (2011). Estimation of jump tails. Econometrica, 79, 1727–1783.zbMATHMathSciNetCrossRefGoogle Scholar
- 13.Cai, T., & Wang, L. (2008). Adaptive variance function estimation in heteroscedastic nonparametric regression. The Annals of Statistics, 36, 2025–2054.zbMATHMathSciNetCrossRefGoogle Scholar
- 14.Cai, T., & Zhou, H. (2009). A data-driven block thresholding approach to wavelet estimation. The Annals of Statistics, 37, 569–595.zbMATHMathSciNetCrossRefGoogle Scholar
- 15.Cai, T., Munk, A., & Schmidt-Hieber, J. (2010). Sharp minimax estimation of the variance of Brownian motion corrupted with Gaussian noise. Statistica Sinica, 20, 1011–1024.zbMATHMathSciNetGoogle Scholar
- 16.Carr, P., & Wu, L. (2004). Time-changed Lévy processes and option pricing. Journal of Financial Economics, 71(1), 113–141.CrossRefGoogle Scholar
- 17.Christensen, K., Kinnebrock, S., & Podolskij, M. (2010). Pre-averaging estimators of the ex-post covariance matrix in noisy diffusion models with non-synchronous data. Journal of Econometrics, 159, 116–133.MathSciNetCrossRefGoogle Scholar
- 18.Cohen, A. (2003). Numerical analysis of wavelet methods. Amsterdam/Boston: Elsevier.zbMATHGoogle Scholar
- 19.Cohen, A., Daubechies, I., & Vial, P. (1993). Wavelets on the interval and fast wavelet transforms. Applied and Computational Harmonic Analysis, 1, 54–81.zbMATHMathSciNetCrossRefGoogle Scholar
- 20.Cont, R., & Tankov, P. (2004). Financial modelling with jump processes. Boca Raton: CRC Press.zbMATHGoogle Scholar
- 21.Dahlhaus, R., & Neddermeyer, J. C. (2013). On-line spot volatility-estimation and decomposition with nonlinear market microstructure noise models. ArXiv e-prints. arXiv:1006.1860v4.Google Scholar
- 22.Daubechies, I. (1992). Ten lectures on wavelets. Philadelphia: SIAM.zbMATHCrossRefGoogle Scholar
- 23.Delbaen, F., & Schachermayer, W. (1994). A general version of the fundamental theorem of asset pricing. Mathematische Annalen, 300, 463–520.zbMATHMathSciNetCrossRefGoogle Scholar
- 24.Delbaen, F., & Schachermayer, W. (1998). The fundamental theorem of asset pricing for unbounded stochastic processes. Mathematische Annalen, 312, 215–250.zbMATHMathSciNetCrossRefGoogle Scholar
- 25.Donoho, D., & Johnstone, I. M. (1994). Ideal spatial adaptation via wavelet shrinkage. Biometrika, 81, 425–455.zbMATHMathSciNetCrossRefGoogle Scholar
- 26.Donoho, D., Johnstone, I. M., Kerkyacharian, G., & Picard, D. (1995). Wavelet shrinkage: Asymptopia? Journal of the Royal Statistical Society: Series B Statistical Methodology, 57, 301–369.zbMATHMathSciNetGoogle Scholar
- 27.Dorfleitner, G. (2004). How short-termed is the trading behaviour in Eurex futures markets? Applied Financial Economics, 14, 1269–1279.CrossRefGoogle Scholar
- 28.Ederington, L. H., & Lee, J. H. (1993). How markets process information: New releases and volatility. The Journal of Finance, 48, 1161–1191.CrossRefGoogle Scholar
- 29.Ederington, L. H., & Lee, J. H. (1995). The short-run dynamics of the price adjustment to new information. Journal of Financial and Quantitative Analysis, 30, 117–134.CrossRefGoogle Scholar
- 30.Fan, J., & Wang, Y. (2007). Multi-scale jump and volatility analysis for high-frequency financial data. Journal of the American Statistical Association, 102, 1349–1362.zbMATHMathSciNetCrossRefGoogle Scholar
- 31.Fan, J., & Wang, Y. (2008). Spot volatility estimation for high-frequency data. Statistics and Its Interface, 1, 279–288.zbMATHMathSciNetCrossRefGoogle Scholar
- 32.Gloter, A., & Jacod, J. (2001). Diffusions with measurement errors. I. Local asymptotic normality. ESAIM Probability and Statistics, 5, 225–242.Google Scholar
- 33.Gloter, A., & Jacod, J. (2001). Diffusions with measurement errors. II. Optimal estimators. ESAIM Probability and Statistics, 5, 243–260.Google Scholar
- 34.Hasbrouck, J. (1993). Assessing the quality of a security market: A new approach to transaction-cost measurement. The Review of Financial Studies, 6, 191–212.CrossRefGoogle Scholar
- 35.Hautsch, N., & Podolskij, M. (2013). Pre-averaging based estimation of quadratic variation in the presence of noise and jumps: Theory, implementation, and empirical evidence. Journal of Business and Economic Statistics, 31(2), 165–183.MathSciNetCrossRefGoogle Scholar
- 36.Hayashi, T., & Yoshida, N. (2005). On covariance estimation of non-synchronously observed diffusion processes. Bernoulli, 11, 359–379.zbMATHMathSciNetCrossRefGoogle Scholar
- 37.Hoffmann, M., Munk, A., & Schmidt-Hieber, J. (2012). Adaptive wavelet estimation of the diffusion coefficient under additive error measurements. Annales de l’Institut Henri Poincaré (B) Probabilités et Statistiques, 48(4), 1186–1216.zbMATHMathSciNetCrossRefGoogle Scholar
- 38.Jacod, J., Li, Y., Mykland, P. A., Podolskij, M., & Vetter, M. (2009). Microstructure noise in the continuous case: The pre-averaging approach. Stochastic Processes and Their Applications, 119(7), 2249–2276.zbMATHMathSciNetCrossRefGoogle Scholar
- 39.Jansen, D., & de Haan, J. (2006). Look who’s talking: ECB communication during the first years of EMU. International Journal of Finance and Economics, 11, 219–228.CrossRefGoogle Scholar
- 40.Li, W. V., & Shao, Q. M. (2002). A normal comparison inequality and its applications. Probability Theory and Related Fields, 122, 494–508.zbMATHMathSciNetCrossRefGoogle Scholar
- 41.Li, Y., Zhang, Z., & Zheng, X. (2013). Volatility inference in the presence of both endogenous time and microstructure noise. Stochastic Processes and Their Applications, 123, 2696–2727.zbMATHMathSciNetCrossRefGoogle Scholar
- 42.Lunde, A., & Zebedee, A. A. (2009). Intraday volatility responses to monetary policy events. Financial Markets and Portfolio Management, 23(4), 383–299.CrossRefGoogle Scholar
- 43.Madahavan, A. (2000). Market microstructure: A survey. Journal of Financial Markets, 3, 205–258.CrossRefGoogle Scholar
- 44.Munk, A., & Schmidt-Hieber, J. (2010). Nonparametric estimation of the volatility function in a high-frequency model corrupted by noise. The Electronic Journal of Statistics, 4, 781–821.zbMATHMathSciNetCrossRefGoogle Scholar
- 45.Munk, A., & Schmidt-Hieber, J. (2010). Lower bounds for volatility estimation in microstructure noise models. In J.O. Berger, T.T. Cai, & I.M. Johnstone (Eds.) Borrowing strength: Theory powering applications - a festschrift for Lawrence D. Brown (Vol. 6, pp. 43–55). Beachwood: Institute of Mathematical StatisticsGoogle Scholar
- 46.Podolskij, M., & Vetter, M. (2009). Estimation of volatility functionals in the simultaneous presence of microstructure noise and jumps. Bernoulli, 15, 634–658.zbMATHMathSciNetCrossRefGoogle Scholar
- 47.Reiß, M. (2011). Asymptotic equivalence for inference on the volatility from noisy observations. The Annals of Statistics, 39(2), 772–802.zbMATHMathSciNetCrossRefGoogle Scholar
- 48.Schmidt-Hieber, J. (2010). Nonparametric methods in spot volatility estimation. PhD thesis, Georg-August-Universität Göttingen.Google Scholar
- 49.van der Ploeg, A. (2005). Stochastic volatility and the pricing of financial derivatives (n∘366 of the Tinbergen Institute research series, No. 366).Google Scholar
- 50.Veraart, A. E., & Winkel, M. (2010). Time change. In R. Cont (Ed.), Encyclopedia of quantitative finance (pp. 1812–1816). Chichester: Wiley.Google Scholar
- 51.Wassermann, L. (2010). All of nonparametric statistics (Springer texts in statistics). New York/London: Springer.Google Scholar
- 52.Zhang, L. (2006). Efficient estimation of stochastic volatility using noisy observations: A multi-scale approach. Bernoulli, 12, 1019–1043.zbMATHMathSciNetCrossRefGoogle Scholar
- 53.Zhang, L. (2011). Estimating covariation: Epps effect and microstructure noise. Journal of Econometrics, 160, 33–47.MathSciNetCrossRefGoogle Scholar
- 54.Zhang, L., Mykland, P., & Ait-Sahalia, Y. (2005). A tale of two time scales: Determining integrated volatility with noisy high-frequency data. Journal of the American Statistical Association, 472, 1394–1411.MathSciNetCrossRefGoogle Scholar
- 55.Zhou, B. (1996). High-frequency data and volatility in foreign-exchange rates. Journal of Business and Economic Statistics, 14, 45–52.Google Scholar