Skip to main content

Short Term Load Forecasting in the Industry for Establishing Consumption Baselines: A French Case

  • Conference paper
Modeling and Stochastic Learning for Forecasting in High Dimensions

Part of the book series: Lecture Notes in Statistics ((LNSP,volume 217))

Abstract

The estimation of baseline electricity consumptions for energy efficiency and load management measures is an essential issue. When implementing real-time energy management platforms for Automatic Monitoring and Targeting (AMT) of energy consumption, baselines shall be calculated previously and must be adaptive to sudden changes. Short Term Load Forecasting (STLF) techniques can be a solution to determine a pertinent frame of reference. In this study, two different forecasting methods are implemented and assessed: a first method based on load curve clustering and a second one based on signal decomposition using Principal Component Analysis (PCA) and Multiple Linear Regression (MLR). Both methods were applied to three different sets of data corresponding to three different industrial sites from different sectors across France. For the evaluation of the methods, a specific criterion adapted to the context of energy management is proposed. The obtained results are satisfying for both of the proposed approaches but the clustering based method shows a better performance. Perspectives for exploring different forecasting methods for these applications are considered for future works, as well as their application to different load curves from diverse industrial sectors and equipments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alhourani, F., & Saxena, U. (2009). Factors affecting the implementation rates of energy and productivity recommendations in small and medium sized companies. Journal of Manufacturing Systems, 28(1), 41–45. doi:10.1016/j.jmsy.2009.04.001.

    Article  Google Scholar 

  2. Attik, M., Bougrain, L., & Alexandre, F. (2005). Self-organizing map initialization. In Artificial neural networks: biological inspirations – ICANN 2005, Warsaw (pp. 357–362).

    Google Scholar 

  3. Bunn, D. W., & Farmer, E. D. (1985). Comparative models for electrical load forecasting. Chichester/New York: Wiley.

    Google Scholar 

  4. Bunse, K., Vodicka, M., Schönsleben, P., Brülhart, M., & Ernst, F. O. (2011). Integrating energy efficiency performance in production management – Gap analysis between industrial needs and scientific literature. Journal of Cleaner Production, 19(6–7), 667–679. doi:10.1016/j.jclepro.2010.11.011.

    Article  Google Scholar 

  5. Chicco, G. (2012). Overview and performance assessment of the clustering methods for electrical load pattern grouping. Energy, 42(1), 68–80. doi:10.1016/j.energy.2011.12.031.

    Article  Google Scholar 

  6. Chicco, G., Napoli, R., & Piglione, F. (2006). Comparisons among clustering techniques for electricity customer classification. IEEE Transactions on Power Systems, 21(2), 933–940. doi:10.1109/TPWRS.2006.873122.

    Article  Google Scholar 

  7. Cottrell, M. (2003). Some other applications of the SOM algorithm: How to use the Kohonen algorithm for forecasting. In Invited lecture at the international work-conference on artificial neural networks, IWANN 2003: Maó, Menorca, Spain.

    Google Scholar 

  8. Coughlin, K., Piette, M. A., Goldman, C., & Kiliccote, S. (2009). Statistical analysis of baseline load models for non-residential buildings. Energy and Buildings, 41(4), 374–381.

    Article  Google Scholar 

  9. Daultrey, S. (1976). Principal components analysis. Norwich: Geo Abstracts.

    Google Scholar 

  10. Fidalgo, J. N., Matos, M. A., & Ribeiro, L. (2012). A new clustering algorithm for load profiling based on billing data. Electric Power Systems Research, 82(1), 27–33. doi:10.1016/j.epsr.2011.08.016.

    Article  Google Scholar 

  11. Giacone, E., & Manc, S. (2012). Energy efficiency measurement in industrial processes. Energy, 38(1), 331–345. doi:10.1016/j.energy.2011.11.054.

    Article  Google Scholar 

  12. Goldberg, M. L., & Kennedy Agnew, G. (2003). Protocol development for demand response calculation: Findings and recommendations (Technical report). KEMA-Xenergy.

    Google Scholar 

  13. Hahn, H., Meyer-Nieberg, S., & Pickl, S. (2009). Electric load forecasting methods: Tools for decision making. European Journal of Operational Research, 199(3), 902–907

    Article  MATH  Google Scholar 

  14. Hatcher, L. (1994). A step-by-step approach to using the SAS system for factor analysis and structural equation modeling. Cary: Sas Institute.

    Google Scholar 

  15. Hippert, H. S., Pedreira, C. E., & Souza, R. C. (2001). Neural networks for short-term load forecasting: A review and evaluation. IEEE Transactions on Power Systems, 16(1), 44–55.

    Article  Google Scholar 

  16. Hu, S., Liu, F., He, Y., & Hu, T. (2012). An on-line approach for energy efficiency monitoring of machine tools. Journal of Cleaner Production, 27, 133–140. doi:10.1016/j.jclepro.2012.01.013.

    Article  Google Scholar 

  17. Kohonen, T. (1990). The self-organizing map. Proceedings of the IEEE, 78(9), 1464–1480. doi:10.1109/5.58325.

    Article  Google Scholar 

  18. Lendasse, A., Lee, J., Wertz, V., & Verleysen, M. (2002). Forecasting electricity consumption using nonlinear projection and self-organizing maps. Neurocomputing, 48(1), 299–311.

    Article  MATH  Google Scholar 

  19. Li, D. C., Chang, C. J., Chen, C. C., & Chen, W. C. (2012). Forecasting short-term electricity consumption using the adaptive grey-based approach – An Asian case. Special Issue on Forecasting in Management Science, 40(6), 767–773. doi:10.1016/j.omega.2011.07.007.

    Google Scholar 

  20. Mahmoudi-Kohan, N., Moghaddam, M. P., & Sheikh-El-Eslami, M. (2010). An annual framework for clustering-based pricing for an electricity retailer. Electric Power Systems Research, 80(9), 1042–1048. doi:10.1016/j.epsr.2010.01.010.

    Article  Google Scholar 

  21. Manera, M., & Marzullo, A. (2005). Modelling the load curve of aggregate electricity consumption using principal components. Environmental Modelling & Software, 20(11), 1389–1400. doi:10.1016/j.envsoft.2004.09.019.

    Article  Google Scholar 

  22. McLachlan, G. J. (2004). Discriminant analysis and statistical pattern recognition. Hoboken: Wiley-Interscience.

    MATH  Google Scholar 

  23. Räsänen, T., Voukantsis, D., Niska, H., Karatzas, K., & Kolehmainen, M. (2010). Data-based method for creating electricity use load profiles using large amount of customer-specific hourly measured electricity use data. Applied Energy, 87(11), 3538–3545. doi:10.1016/j.apenergy.2010.05.015.

    Article  Google Scholar 

  24. Reichl, J., & Kollmann, A. (2010). Strategic homogenisation of energy efficiency measures: An approach to improve the efficiency and reduce the costs of the quantification of energy savings. Energy Efficiency, 3(3), 189–201.

    Article  Google Scholar 

  25. Rousset, P. (1999). Applications des algorithmes d’auto-organisation à la classification et à la prévision. PhD thesis, Université Paris I, Paris.

    Google Scholar 

  26. Soliman, S. Ah., & Al-Kandari, A. M. (2010). Electrical load forecasting: Modeling and model construction. New York: Elsevier

    Google Scholar 

  27. Taylor, J. W., De Menezes, L. M., & McSharry, P. E. (2006) A comparison of univariate methods for forecasting electricity demand up to a day ahead. International Journal of Forecasting, 22(1), 1–16.

    Article  Google Scholar 

  28. Thang, K., Aggarwal, R., McGrail, A., & Esp, D. (2003). Analysis of power transformer dissolved gas data using the self-organizing map. IEEE Transactions on Power Delivery, 18(4), 1241–1248. doi:10.1109/TPWRD.2003.817733.

    Article  Google Scholar 

  29. Tsekouras, G., Kotoulas, P., Tsirekis, C., Dialynas, E., & Hatziargyriou, N. (2008). A pattern recognition methodology for evaluation of load profiles and typical days of large electricity customers. Electric Power Systems Research, 78(9), 1494–1510. doi:10.1016/j.epsr.2008.01.010.

    Article  Google Scholar 

  30. Vijayaraghavan, A., & Dornfeld, D. (2010). Automated energy monitoring of machine tools. CIRP Annals Manufacturing Technology, 59(1), 21–24. doi:10.1016/j.cirp.2010.03.042.

    Article  Google Scholar 

  31. Vine, E. (2008). Breaking down the silos: The integration of energy efficiency, renewable energy, demand response and climate change. Energy Efficiency, 1(1), 49–63.

    Article  MathSciNet  Google Scholar 

  32. Vine, E. L., & Sathaye, J. A. (2000). The monitoring, evaluation, reporting, verification, and certification of energy-efficiency projects. Mitigation and Adaptation Strategies for Global Change, 5(2), 189–216.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Blancarte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Blancarte, J., Batton-Hubert, M., Bay, X., Girard, MA., Grau, A. (2015). Short Term Load Forecasting in the Industry for Establishing Consumption Baselines: A French Case. In: Antoniadis, A., Poggi, JM., Brossat, X. (eds) Modeling and Stochastic Learning for Forecasting in High Dimensions. Lecture Notes in Statistics(), vol 217. Springer, Cham. https://doi.org/10.1007/978-3-319-18732-7_1

Download citation

Publish with us

Policies and ethics