Skip to main content

Assembly and Regulation of Nuclear Receptor Corepressor Complexes

  • Chapter
  • First Online:
Nuclear Receptors: From Structure to the Clinic

Abstract

Nuclear receptor corepressors are key components of large multi-protein complexes that regulate gene expression. These complexes are recruited to specific genomic loci through the interaction with unliganded, or antagonist-bound, nuclear receptors as well as other repressive transcription factors. The activity of these complexes is mediated in large part through stably associated enzymes that act on the chromatin in the vicinity of the recruitment sites. The best-studied corepressors associated with nuclear receptors are the homologous proteins SMRT and NCoR. These are large proteins that contain extensive intrinsically disordered regions. These regions contain many short conserved sequence motifs that mediate the interactions with transcription factors as well as other proteins. A structured core region within the corepressors mediates assembly of SMRT and NCoR with two scaffold proteins GPS2 and TBL1 as well as the histone deacetylase enzyme HDAC3. Importantly, HDAC3 is activated through assembly into the complex and in the context of the complex its activity is regulated by inositol phosphates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad KF, Melnick A, Lax S et al (2003) Mechanism of SMRT corepressor recruitment by the BCL6 BTB domain. Mol Cell 12:1551–1564

    CAS  PubMed  Google Scholar 

  • Ariyoshi M, Schwabe JWR (2003) A conserved structural motif reveals the essential transcriptional repression function of Spen proteins and their role in developmental signaling. Genes Dev 17:1909–1920. doi:10.1101/gad.266203

    PubMed Central  CAS  PubMed  Google Scholar 

  • Arrar M, Turnham R, Pierce L et al (2013) Structural insight into the separate roles of inositol tetraphosphate and deacetylase-activating domain in activation of histone deacetylase 3. Protein Sci 22:83–92. doi:10.1002/pro.2190

    PubMed Central  CAS  PubMed  Google Scholar 

  • Barker CJ, Wright J, Hughes PJ et al (2004) Complex changes in cellular inositol phosphate complement accompany transit through the cell cycle. Biochem J 380:465–473. doi:10.1042/BJ20031872

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bassi MT, Ramesar RS, Caciotti B et al (1999) X-linked late-onset sensorineural deafness caused by a deletion involving OA1 and a novel gene containing WD-40 repeats. Am J Hum Genet 64:1604–1616. doi:10.1086/302408

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bourguet W, Ruff M, Chambon P et al (1995) Crystal structure of the ligand-binding domain of the human nuclear receptor RXR-alpha. Nature 375:377–382. doi:10.1038/375377a0

    CAS  PubMed  Google Scholar 

  • Boyer LA, Langer MR, Crowley KA et al (2002) Essential role for the SANT domain in the functioning of multiple chromatin remodeling enzymes. Mol Cell 10:935–942

    CAS  PubMed  Google Scholar 

  • Boyer LA, Latek RR, Peterson CL (2004) The SANT domain: a unique histone-tail-binding module? Nat Rev Mol Cell Biol 5:158–163. doi:10.1038/nrm1314

    CAS  PubMed  Google Scholar 

  • Cavaillès V, Dauvois S, L’Horset F et al (1995) Nuclear factor RIP140 modulates transcriptional activation by the estrogen receptor. EMBO J 14:3741–3751

    PubMed Central  PubMed  Google Scholar 

  • Chandra V, Huang P, Hamuro Y et al (2008) Structure of the intact PPAR-gamma-RXR- nuclear receptor complex on DNA. Nature 456:350–356. doi:10.1038/nature07413

    PubMed Central  PubMed  Google Scholar 

  • Chandra V, Huang P, Potluri N et al (2013) Multidomain integration in the structure of the HNF-4a nuclear receptor complex. Nature 495:394–398. doi:10.1038/nature11966

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chen JD, Evans RM (1995) A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 377:454–457. doi:10.1038/377454a0

    CAS  PubMed  Google Scholar 

  • Codina A, Love JD, Li Y et al (2005) Structural insights into the interaction and activation of histone deacetylase 3 by nuclear receptor corepressors. Proc Natl Acad Sci U S A 102:6009–6014. doi:10.1073/pnas.0500299102

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cohen RN, Brzostek S, Kim B et al (2001) The specificity of interactions between nuclear hormone receptors and corepressors is mediated by distinct amino acid sequences within the interacting domains. Mol Endocrinol 15:1049–1061. doi:10.1210/mend.15.7.0669

    CAS  PubMed  Google Scholar 

  • Cosma MP, Tanaka T, Nasmyth K (1999) Ordered recruitment of transcription and chromatin remodeling factors to a cell cycle- and developmentally regulated promoter. Cell 97:299–311

    CAS  PubMed  Google Scholar 

  • Couture J-F, Collazo E, Trievel RC (2006) Molecular recognition of histone H3 by the WD40 protein WDR5. Nat Struct Mol Biol 13:698–703. doi:10.1038/nsmb1116

    CAS  PubMed  Google Scholar 

  • Cronet P, Petersen JF, Folmer R et al (2001) Structure of the PPARalpha and -gamma ligand binding domain in complex with AZ 242; ligand selectivity and agonist activation in the PPAR family. Structure 9:699–706

    CAS  PubMed  Google Scholar 

  • Dangond F, Hafler DA, Tong JK et al (1998) Differential display cloning of a novel human histone deacetylase (HDAC3) cDNA from PHA-activated immune cells. Biochem Biophys Res Commun 242:648–652. doi:10.1006/bbrc.1997.8033

    CAS  PubMed  Google Scholar 

  • Darimont BD, Wagner RL, Apriletti JW et al (1998) Structure and specificity of nuclear receptor-coactivator interactions. Genes Dev 12:3343–3356

    PubMed Central  CAS  PubMed  Google Scholar 

  • Doyon Y, Cayrou C, Ullah M et al (2006) ING tumor suppressor proteins are critical regulators of chromatin acetylation required for genome expression and perpetuation. Mol Cell 21:51–64. doi:10.1016/j.molcel.2005.12.007

    CAS  PubMed  Google Scholar 

  • Fernandes I, Bastien Y, Wai T et al (2003) Ligand-dependent nuclear receptor corepressor LCoR functions by histone deacetylase-dependent and -independent mechanisms. Mol Cell 11:139–150

    CAS  PubMed  Google Scholar 

  • Finnin MS, Donigian JR, Cohen A et al (1999) Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature 401:188–193. doi:10.1038/43710

    CAS  PubMed  Google Scholar 

  • Fischle W, Dequiedt F, Fillion M et al (2001) Human HDAC7 histone deacetylase activity is associated with HDAC3 in vivo. J Biol Chem 276:35826–35835. doi:10.1074/jbc.M104935200

    CAS  PubMed  Google Scholar 

  • Fischle W, Dequiedt F, Hendzel MJ et al (2002) Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR. Mol Cell 9:45–57

    CAS  PubMed  Google Scholar 

  • Gelmetti V, Zhang J, Fanelli M et al (1998) Aberrant recruitment of the nuclear receptor corepressor-histone deacetylase complex by the acute myeloid leukemia fusion partner ETO. Mol Cell Biol 18:7185–7191

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ghetu AF, Corcoran CM, Cerchietti L et al (2008) Structure of a BCOR corepressor peptide in complex with the BCL6 BTB domain dimer. Mol Cell 29:384–391. doi:10.1016/j.molcel.2007.12.026

    PubMed Central  CAS  PubMed  Google Scholar 

  • Goodson M, Jonas BA, Privalsky MA (2005) Corepressors: custom tailoring and alterations while you wait. Nucl Recept Signal 3:e003. doi:10.1621/nrs.03003

    PubMed Central  PubMed  Google Scholar 

  • Goodson ML, Mengeling BJ, Jonas BA, Privalsky ML (2011) Alternative mRNA splicing of corepressors generates variants that play opposing roles in adipocyte differentiation. J Biol Chem 286:44988–44999. doi:10.1074/jbc.M111.291625

    PubMed Central  CAS  PubMed  Google Scholar 

  • Grüne T, Brzeski J, Eberharter A et al (2003) Crystal structure and functional analysis of a nucleosome recognition module of the remodeling factor ISWI. Mol Cell 12:449–460

    PubMed  Google Scholar 

  • Guenther MG, Lane WS, Fischle W et al (2000) A core SMRT corepressor complex containing HDAC3 and TBL1, a WD40-repeat protein linked to deafness. Genes Dev 14:1048–1057

    PubMed Central  CAS  PubMed  Google Scholar 

  • Guenther MG, Barak O, Lazar MA (2001) The SMRT and N-CoR corepressors are activating cofactors for histone deacetylase 3. Mol Cell Biol 21:6091–6101

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hartman HB, Yu J, Alenghat T et al (2005) The histone-binding code of nuclear receptor co-repressors matches the substrate specificity of histone deacetylase 3. EMBO Rep 6:445–451. doi:10.1038/sj.embor.7400391

    PubMed Central  CAS  PubMed  Google Scholar 

  • Heery DM, Kalkhoven E, Hoare S, Parker MG (1997) A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 387:733–736. doi:10.1038/42750

    CAS  PubMed  Google Scholar 

  • Hoberg JE, Yeung F, Mayo MW (2004) SMRT derepression by the IkappaB kinase alpha: a prerequisite to NF-kappaB transcription and survival. Mol Cell 16:245–255. doi:10.1016/j.molcel.2004.10.010

    CAS  PubMed  Google Scholar 

  • Hörlein AJ, Näär AM, Heinzel T et al (1995) Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 377:397–404. doi:10.1038/377397a0

    PubMed  Google Scholar 

  • Hu X, Lazar MA (1999) The CoRNR motif controls the recruitment of corepressors by nuclear hormone receptors. Nature 402:93–96. doi:10.1038/47069

    CAS  PubMed  Google Scholar 

  • Jepsen K, Hermanson O, Onami TM et al (2000) Combinatorial roles of the nuclear receptor corepressor in transcription and development. Cell 102:753–763

    CAS  PubMed  Google Scholar 

  • Jepsen K, Solum D, Zhou T et al (2007) SMRT-mediated repression of an H3K27 demethylase in progression from neural stem cell to neuron. Nature 450:415–419. doi:10.1038/nature06270

    CAS  PubMed  Google Scholar 

  • Jin L, Feng X, Rong H et al (2013) The antiparasitic drug ivermectin is a novel FXR ligand that regulates metabolism. Nat Commun 4:1937. doi:10.1038/ncomms2924

    PubMed  Google Scholar 

  • Kallenberger BC, Love JD, Chatterjee VKK, Schwabe JWR (2003) A dynamic mechanism of nuclear receptor activation and its perturbation in a human disease. Nat Struct Biol 10:136–140. doi:10.1038/nsb892

    CAS  PubMed  Google Scholar 

  • Kao HY, Downes M, Ordentlich P, Evans RM (2000) Isolation of a novel histone deacetylase reveals that class I and class II deacetylases promote SMRT-mediated repression. Genes Dev 14:55–66

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kateb F, Perrin H, Tripsianes K et al (2013) Structural and functional analysis of the DEAF-1 and BS69 MYND domains. PLoS One 8:e54715. doi:10.1371/journal.pone.0054715

    PubMed Central  CAS  PubMed  Google Scholar 

  • Keidel S, LeMotte P, Apfel C (1994) Different agonist- and antagonist-induced conformational changes in retinoic acid receptors analyzed by protease mapping. Mol Cell Biol 14:287–298

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705. doi:10.1016/j.cell.2007.02.005

    CAS  PubMed  Google Scholar 

  • Kulozik P, Jones A, Mattijssen F et al (2011) Hepatic deficiency in transcriptional cofactor TBL1 promotes liver steatosis and hypertriglyceridemia. Cell Metab 13:389–400. doi:10.1016/j.cmet.2011.02.011

    CAS  PubMed  Google Scholar 

  • Kumar R, Wang R-A, Mazumdar A et al (2002) A naturally occurring MTA1 variant sequesters oestrogen receptor-alpha in the cytoplasm. Nature 418:654–657. doi:10.1038/nature00889

    CAS  PubMed  Google Scholar 

  • Laherty CD, Yang WM, Sun JM et al (1997) Histone deacetylases associated with the mSin3 corepressor mediate mad transcriptional repression. Cell 89:349–356

    CAS  PubMed  Google Scholar 

  • le Maire A, Teyssier C, Erb C et al (2010) A unique secondary-structure switch controls constitutive gene repression by retinoic acid receptor. Nat Struct Mol Biol 17:801–807. doi:10.1038/nsmb.1855

    CAS  PubMed  Google Scholar 

  • Lee MG, Wynder C, Cooch N, Shiekhattar R (2005) An essential role for CoREST in nucleosomal histone 3 lysine 4 demethylation. Nature 437:432–435. doi:10.1038/nature04021

    CAS  PubMed  Google Scholar 

  • Lee MG, Wynder C, Bochar DA et al (2006) Functional interplay between histone demethylase and deacetylase enzymes. Mol Cell Biol 26:6395–6402. doi:10.1128/MCB.00723-06

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li J, Wang J, Wang J et al (2000) Both corepressor proteins SMRT and N-CoR exist in large protein complexes containing HDAC3. EMBO J 19:4342–4350. doi:10.1093/emboj/19.16.4342

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liu X-F, Bagchi MK (2004) Recruitment of distinct chromatin-modifying complexes by tamoxifen-complexed estrogen receptor at natural target gene promoters in vivo. J Biol Chem 279:15050–15058. doi:10.1074/jbc.M311932200

    CAS  PubMed  Google Scholar 

  • Liu Y, Chen W, Gaudet J et al (2007) Structural basis for recognition of SMRT/N-CoR by the MYND domain and its contribution to AML1/ETO’s activity. Cancer Cell 11:483–497. doi:10.1016/j.ccr.2007.04.010

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lonard DM, O’Malley BW (2007) Nuclear receptor coregulators: judges, juries, and executioners of cellular regulation. Mol Cell 27:691–700. doi:10.1016/j.molcel.2007.08.012

    CAS  PubMed  Google Scholar 

  • Lou X, Toresson G, Benod C et al (2014) Structure of the retinoid X receptor a-liver X receptor b (RXRa-LXRb) heterodimer on DNA. Nat Struct Mol Biol. doi:10.1038/nsmb.2778

    Google Scholar 

  • Madauss KP, Grygielko ET, Deng S-J et al (2007) A structural and in vitro characterization of asoprisnil: a selective progesterone receptor modulator. Mol Endocrinol 21:1066–1081. doi:10.1210/me.2006–0524

    CAS  PubMed  Google Scholar 

  • Makowski A, Brzostek S, Cohen RN, Hollenberg AN (2003) Determination of nuclear receptor corepressor interactions with the thyroid hormone receptor. Mol Endocrinol 17:273–286. doi:10.1210/me.2002–0310

    CAS  PubMed  Google Scholar 

  • Malartre M, Short S, Sharpe C (2004) Alternative splicing generates multiple SMRT transcripts encoding conserved repressor domains linked to variable transcription factor interaction domains. Nucleic Acids Res 32:4676–4686. doi:10.1093/nar/gkh786

    PubMed Central  CAS  PubMed  Google Scholar 

  • Malartre M, Short S, Sharpe C (2006) Xenopus embryos lacking specific isoforms of the corepressor SMRT develop abnormal heads. Dev Biol 292:333–343. doi:10.1016/j.ydbio.2006.01.007

    CAS  PubMed  Google Scholar 

  • Mathur M, Tucker PW, Samuels HH (2001) PSF is a novel corepressor that mediates its effect through Sin3A and the DNA binding domain of nuclear hormone receptors. Mol Cell Biol 21:2298–2311. doi:10.1128/MCB.21.7.2298–2311.2001

    PubMed Central  CAS  PubMed  Google Scholar 

  • McKenna NJ, Lanz RB, O’Malley BW (1999) Nuclear receptor coregulators: cellular and molecular biology. Endocr Rev 20:321–344

    CAS  PubMed  Google Scholar 

  • Métivier R, Penot G, Hübner MR et al (2003) Estrogen receptor-alpha directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter. Cell 115:751–763

    PubMed  Google Scholar 

  • Metzger E, Wissmann M, Yin N et al (2005) LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 437:436–439. doi:10.1038/nature04020

    CAS  PubMed  Google Scholar 

  • Mikami S, Kanaba T, Takizawa N et al (2014) Structural insights into the recruitment of SMRT by the corepressor SHARP under phosphorylative regulation. Structure 22:35–46. doi:10.1016/j.str.2013.10.007

    CAS  PubMed  Google Scholar 

  • Millard CJ, Watson PJ, Celardo I et al (2013) Class I HDACs share a common mechanism of regulation by inositol phosphates. Mol Cell 51:57–67. doi:10.1016/j.molcel.2013.05.020

    PubMed Central  CAS  PubMed  Google Scholar 

  • Murzina NV, Pei X-Y, Zhang W et al (2008) Structural basis for the recognition of histone H4 by the histone-chaperone RbAp46. Structure 16:1077–1085. doi:10.1016/j.str.2008.05.006

    PubMed Central  CAS  PubMed  Google Scholar 

  • Musselman CA, Lalonde M-E, Côté J, Kutateladze TG (2012) Perceiving the epigenetic landscape through histone readers. Nat Struct Mol Biol 19:1218–1227. doi:10.1038/nsmb.2436

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nagy L, Schwabe JWR (2004) Mechanism of the nuclear receptor molecular switch. Trends Biochem Sci 29:317–324. doi:10.1016/j.tibs.2004.04.006

    CAS  PubMed  Google Scholar 

  • Nagy L, Kao HY, Chakravarti D et al (1997) Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and histone deacetylase. Cell 89:373–380

    CAS  PubMed  Google Scholar 

  • Nagy L, Kao HY, Love JD et al (1999) Mechanism of corepressor binding and release from nuclear hormone receptors. Genes Dev 13:3209–3216

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nolte RT, Wisely GB, Westin S et al (1998) Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-gamma. Nature 395:137–143. doi:10.1038/25931

    CAS  PubMed  Google Scholar 

  • Oberoi J, Fairall L, Watson PJ et al (2011) Structural basis for the assembly of the SMRT/NCoR core transcriptional repression machinery. Nat Struct Mol Biol 18:177–184. doi:10.1038/nsmb.1983

    PubMed Central  CAS  PubMed  Google Scholar 

  • Perissi V, Staszewski LM, McInerney EM et al (1999) Molecular determinants of nuclear receptor-corepressor interaction. Genes Dev 13:3198–3208

    PubMed Central  CAS  PubMed  Google Scholar 

  • Perissi V, Jepsen K, Glass CK, Rosenfeld MG (2010) Deconstructing repression: evolving models of co-repressor action. Nat Rev Genet 11:109–123. doi:10.1038/nrg2736

    CAS  PubMed  Google Scholar 

  • Phelan CA, Gampe RT, Lambert MH et al (2010) Structure of Rev-erbalpha bound to N-CoR reveals a unique mechanism of nuclear receptor-co-repressor interaction. Nat Struct Mol Biol 17:808–814. doi:10.1038/nsmb.1860

    PubMed Central  CAS  PubMed  Google Scholar 

  • Picard F, Kurtev M, Chung N et al (2004) Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 429:771–776. doi:10.1038/nature02583

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pissios P, Tzameli I, Kushner P, Moore DD (2000) Dynamic stabilization of nuclear receptor ligand binding domains by hormone or corepressor binding. Mol Cell 6:245–253

    CAS  PubMed  Google Scholar 

  • Potter GB, Potter GB, Beaudoin GM et al (2001) The hairless gene mutated in congenital hair loss disorders encodes a novel nuclear receptor corepressor. Genes Dev 15:2687–2701. doi:10.1101/gad.916701

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pugh TJ, Weeraratne SD, Archer TC et al (2012) Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations. Nature 488:106–110. doi:10.1038/nature11329

    PubMed Central  CAS  PubMed  Google Scholar 

  • Qin S, Parthun MR (2006) Recruitment of the type B histone acetyltransferase Hat1p to chromatin is linked to DNA double-strand breaks. Mol Cell Biol 26:3649–3658. doi:10.1128/MCB.26.9.3649–3658.2006

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rastinejad F, Huang P, Chandra V, Khorasanizadeh S (2013) Understanding nuclear receptor form and function using structural biology. J Mol Endocrinol 51:T1–21. doi:10.1530/JME-13-0173

    PubMed Central  CAS  PubMed  Google Scholar 

  • Renaud JP, Rochel N, Ruff M et al (1995) Crystal structure of the RAR-gamma ligand-binding domain bound to all-trans retinoic acid. Nature 378:681–689. doi:10.1038/378681a0

    CAS  PubMed  Google Scholar 

  • Ruthenburg AJ, Wang W, Graybosch DM et al (2006) Histone H3 recognition and presentation by the WDR5 module of the MLL1 complex. Nat Struct Mol Biol 13:704–712. doi:10.1038/nsmb1119

    CAS  PubMed  Google Scholar 

  • Ruthenburg AJ, Allis CD, Wysocka J (2007) Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark. Mol Cell 25:15–30. doi:10.1016/j.molcel.2006.12.014

    CAS  PubMed  Google Scholar 

  • Santos GM, Fairall L, Schwabe JWR (2011) Negative regulation by nuclear receptors: a plethora of mechanisms. Trends Endocrinol Metab 22:87–93. doi:10.1016/j.tem.2010.11.004

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sanyal S, BÃ¥vner A, Haroniti A et al (2007) Involvement of corepressor complex subunit GPS2 in transcriptional pathways governing human bile acid biosynthesis. Proc Natl Acad Sci U S A 104:15665–15670. doi:10.1073/pnas.0706736104

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schoch GA, D’Arcy B, Stihle M et al (2010) Molecular switch in the glucocorticoid receptor: active and passive antagonist conformations. J Mol Biol 395:568–577. doi:10.1016/j.jmb.2009.11.011

    CAS  PubMed  Google Scholar 

  • Short S, Malartre M, Sharpe C (2005) SMRT has tissue-specific isoform profiles that include a form containing one CoRNR box. Biochem Biophys Res Commun 334:845–852. doi:10.1016/j.bbrc.2005.06.175

    CAS  PubMed  Google Scholar 

  • Spain BH, Bowdish KS, Pacal AR et al (1996) Two human cDNAs, including a homolog of Arabidopsis FUS6 (COP11), suppress G-protein- and mitogen-activated protein kinase-mediated signal transduction in yeast and mammalian cells. Mol Cell Biol 16:6698–6706

    PubMed Central  CAS  PubMed  Google Scholar 

  • Stanya KJ, Liu Y, Means AR, Kao H-Y (2008) Cdk2 and Pin1 negatively regulate the transcriptional corepressor SMRT. J Cell Biol 183:49–61. doi:10.1083/jcb.200806172

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tagami T, Park Y, Jameson JL (1999) Mechanisms that mediate negative regulation of the thyroid-stimulating hormone alpha gene by the thyroid hormone receptor. J Biol Chem 274:22345–22353

    CAS  PubMed  Google Scholar 

  • Takacs M, Petoukhov MV, Atkinson RA et al (2013) The asymmetric binding of PGC-1a to the ERRa and ERRg nuclear receptor homodimers involves a similar recognition mechanism. PLoS One 8:e67810. doi:10.1371/journal.pone.0067810

    PubMed Central  CAS  PubMed  Google Scholar 

  • Taunton J, Hassig CA, Schreiber SL (1996) A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272:408–411

    CAS  PubMed  Google Scholar 

  • Toh Y, Kuninaka S, Endo K et al (2000) Molecular analysis of a candidate metastasis-associated gene, MTA1: possible interaction with histone deacetylase 1. J Exp Clin Cancer Res 19:105–111

    CAS  PubMed  Google Scholar 

  • Toubal A, Clément K, Fan R et al (2013) SMRT-GPS2 corepressor pathway dysregulation coincides with obesity-linked adipocyte inflammation. J Clin Invest 123:362–379. doi:10.1172/JCI64052

    PubMed Central  CAS  PubMed  Google Scholar 

  • Turner BM (1993) Decoding the nucleosome. Cell 75:5–8

    CAS  PubMed  Google Scholar 

  • Varlakhanova N, Hahm JB, Privalsky ML (2011) Regulation of SMRT corepressor dimerization and composition by MAP kinase phosphorylation. Mol Cell Endocrinol 332:180–188. doi:10.1016/j.mce.2010.10.010

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wagner RL, Apriletti JW, McGrath ME et al (1995) A structural role for hormone in the thyroid hormone receptor. Nature 378:690–697. doi:10.1038/378690a0

    CAS  PubMed  Google Scholar 

  • Wang L, Zuercher WJ, Consler TG et al (2006) X-ray crystal structures of the estrogen-related receptor-gamma ligand binding domain in three functional states reveal the molecular basis of small molecule regulation. J Biol Chem 281:37773–37781. doi:10.1074/jbc.M608410200

    CAS  PubMed  Google Scholar 

  • Wang Z, Zang C, Cui K et al (2009) Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell 138:1019–1031. doi:10.1016/j.cell.2009.06.049

    PubMed Central  CAS  PubMed  Google Scholar 

  • Watkins RE, Davis-Searles PR, Lambert MH, Redinbo MR (2003) Coactivator binding promotes the specific interaction between ligand and the pregnane X receptor. J Mol Biol 331:815–828

    CAS  PubMed  Google Scholar 

  • Watson PJ, Fairall L, Santos GM, Schwabe JWR (2012) Structure of HDAC3 bound to co-repressor and inositol tetraphosphate. Nature 481:335–340. doi:10.1038/nature10728

    PubMed Central  CAS  PubMed  Google Scholar 

  • Webb P, Anderson CM, Valentine C et al (2000) The nuclear receptor corepressor (N-CoR) contains three isoleucine motifs (I/LXXII) that serve as receptor interaction domains (IDs). Mol Endocrinol 14:1976–1985

    CAS  PubMed  Google Scholar 

  • Wei LN, Hu X, Chandra D et al (2000) Receptor-interacting protein 140 directly recruits histone deacetylases for gene silencing. J Biol Chem 275:40782–40787. doi:10.1074/jbc.M004821200

    CAS  PubMed  Google Scholar 

  • Wen YD, Perissi V, Staszewski LM et al (2000) The histone deacetylase-3 complex contains nuclear receptor corepressors. Proc Natl Acad Sci U S A 97:7202–7207

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wu K, Yang Y, Wang C et al (2003) DACH1 inhibits transforming growth factor-beta signaling through binding Smad4. J Biol Chem 278:51673–51684. doi:10.1074/jbc.M310021200

    CAS  PubMed  Google Scholar 

  • Wysocka J, Swigut T, Milne TA et al (2005) WDR5 associates with histone H3 methylated at K4 and is essential for H3 K4 methylation and vertebrate development. Cell 121:859–872. doi:10.1016/j.cell.2005.03.036

    CAS  PubMed  Google Scholar 

  • Xu HE, Stanley TB, Montana VG et al (2002) Structural basis for antagonist-mediated recruitment of nuclear co-repressors by PPARalpha. Nature 415:813–817. doi:10.1038/415813a

    CAS  PubMed  Google Scholar 

  • Xue Y, Wong J, Moreno GT et al (1998) NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities. Mol Cell 2:851–861

    CAS  PubMed  Google Scholar 

  • Yang WM, Yao YL, Sun JM et al (1997) Isolation and characterization of cDNAs corresponding to an additional member of the human histone deacetylase gene family. J Biol Chem 272:28001–28007

    CAS  PubMed  Google Scholar 

  • Yoon H-G, Chan DW, Reynolds AB et al (2003) N-CoR mediates DNA methylation-dependent repression through a methyl CpG binding protein Kaiso. Mol Cell 12:723–734

    CAS  PubMed  Google Scholar 

  • Yu J, Li Y, Ishizuka T et al (2003) A SANT motif in the SMRT corepressor interprets the histone code and promotes histone deacetylation. EMBO J 22:3403–3410. doi:10.1093/emboj/cdg326

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang J, Guenther MG, Carthew RW, Lazar MA (1998) Proteasomal regulation of nuclear receptor corepressor-mediated repression. Genes Dev 12:1775–1780

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang J, Kalkum M, Chait BT, Roeder RG (2002) The N-CoR-HDAC3 nuclear receptor corepressor complex inhibits the JNK pathway through the integral subunit GPS2. Mol Cell 9:611–623

    CAS  PubMed  Google Scholar 

  • Zhang D, Yoon H-G, Wong J (2005) JMJD2A is a novel N-CoR-interacting protein and is involved in repression of the human transcription factor achaete scute-like homologue 2 (ASCL2/Hash2). Mol Cell Biol 25:6404–6414. doi:10.1128/MCB.25.15.6404–6414.2005

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang H, Chen L, Chen J et al (2011) Structural basis for retinoic X receptor repression on the tetramer. J Biol Chem 286:24593–24598. doi:10.1074/jbc.M111.245498

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou Y, Gross W, Hong SH, Privalsky ML (2001) The SMRT corepressor is a target of phosphorylation by protein kinase CK2 (casein kinase II). Mol Cell Biochem 220:1–13

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Louise Fairall for critical reading of the manuscript. This work was supported by the Wellcome Trust (grant number WT085408) and the BBSRC (grant number 10867).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John W. R. Schwabe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Millard, C., Schwabe, J. (2015). Assembly and Regulation of Nuclear Receptor Corepressor Complexes. In: McEwan, I., Kumar, R. (eds) Nuclear Receptors: From Structure to the Clinic. Springer, Cham. https://doi.org/10.1007/978-3-319-18729-7_9

Download citation

Publish with us

Policies and ethics