Skip to main content

Corticosteroid Receptors

  • Chapter
  • First Online:
Nuclear Receptors: From Structure to the Clinic

Abstract

The mineralocorticoid receptor (MR) mediates the effects of aldosterone in epithelial tissues. The MR is also expressed in many other tissues where its role may be that of a cortisol/corticosterone receptor. The MR is a member of the nuclear receptor superfamily and as such contains three principal structural domains, the N-terminal domain, the DNA-binding domain and the ligand-binding domain. The latter two exhibit both structural and functional features which overlap with those of other steroid receptors whereas the N-terminal domain exhibits a number of unique structural features. The various interactions of the MR both between domains and with other molecules serve to determine both ligand specificity, sensitivity and tissue-specific responses. An increasing focus on the importance of MR blockade in a range of clinical conditions makes an understanding of structure-function relationships an imperative if novel therapeutic strategies are to be developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Hafiz H, Takimoto GS, Tung L, Horwitz KB (2002) The inhibitory function in human progesterone receptor N termini binds SUMO-1 protein to regulate autoinhibition and transrepression. J Biol Chem 277:33950–33956

    CAS  PubMed  Google Scholar 

  • Ackermann D, Gresko N, Carrel M, Loffing-Cueni D, Habermehl D, Gomez-Sanchez C, Rossier BC, Loffing J (2010) In vivo nuclear translocation of mineralocorticoid and glucocorticoid receptors in rat kidney: differential effect of corticosteroids along the distal tubule. Am J Physiol Renal Physiol 299:F1473–F1485

    CAS  PubMed  Google Scholar 

  • Arriza JL, Weinberger C, Cerelli G, Glaser TM, Handelin BL, Housman DE, Evans RM (1987) Cloning of human mineralocorticoid receptor complementary DNA: structural and functional kinship with the glucocorticoid receptor. Science 237:268

    CAS  PubMed  Google Scholar 

  • Auboeuf D, Batsche E, Dutertre M, Muchardt C, O’Malley BW (2007) Coregulators: transducing signal from transcription to alternative splicing. Trends Endocrinol Metab 18:122–129

    CAS  PubMed  Google Scholar 

  • Auzou G, Fagart J, Souque A, Hellal-Lévy C, Wurtz JM, Moras D, Rafestin-Oblin ME (2000) A single amino acid mutation of ala-773 in the mineralocorticoid receptor confers agonist properties to 11beta-substituted spirolactones. Mol Pharmacol 58(4):684–691

    CAS  PubMed  Google Scholar 

  • Baudrand R, Pojoga LH, Romero JR, Williams GH (2014) Aldosterone’s mechanism of action: roles of lysine-specific demethylase 1, caveolin and striatin. Curr Opin Nephrol Hypertens 37:23–32

    Google Scholar 

  • Benhamou B, Garcia T, Lerouge T, Vergezac A, Gofflo D, Bigogne C, Chambon P, Gronemeyer H (1992) A single amino acid that determines the sensitivity of progesterone receptors to RU486. Science 255:206–209

    CAS  PubMed  Google Scholar 

  • Binart N, Lombes M, Baulieu EE (1995) Distinct functions of the 90 kDa heatshock protein (hsp90) in oestrogen and mineralocorticosteroid receptor activity: effects of hsp90 deletion mutants. Biochem J 311(Pt. 3):797–804

    PubMed Central  CAS  PubMed  Google Scholar 

  • Blasi ER, Rocha R, Rudolph AE, Blomme EA, Polly ML, McMahon EG (2003) Aldosterone/salt induces renal inflammation and fibrosis in hypertensive rats. Kidney Int 63(5):1791–1800

    CAS  PubMed  Google Scholar 

  • Bledsoe RK, Montana VG, Stanley TB, Delves CJ, Apolito CJ, McKee DD, Consler TG, Parks DJ, Stewart EL, Willson TM, Lambert MH, Moore JT, Pearce KH, Xu HE (2002) Crystal structure of the glucocorticoid receptor ligand binding domain reveals a novel mode of receptor dimerization and coactivator recognition. Cell 110:93–105

    CAS  PubMed  Google Scholar 

  • Bledsoe RK, Madauss KP, Holt JA, Apolito CJ, Lambert MH, Pearce KH, Stanley TB, Stewart EL, Trump RP, Willson TM, Williams SP (2005) A ligand-mediated hydrogen bond network required for the activation of the mineralocorticoid receptor. J Biol Chem 280:31283–31293

    CAS  PubMed  Google Scholar 

  • Bookout AL, Jeong Y, Downes M, Yu RT, Evans RM, Mangelsdorf DJ (2006) Anatomical profiling of nuclear receptor expression reveals a hierarchical transcriptional network. Cell 126:789–799

    CAS  PubMed  Google Scholar 

  • Brodie J, McEwan IJ (2005) Intra-domain communication between the N-terminal and DNA-binding domains of the androgen receptor: modulation of androgen response element DNA binding. J Mol Endocrinol 34:603–615

    CAS  PubMed  Google Scholar 

  • Bruner KL, Derfoul A, Robertson NM, Guerriero G, Fernandes-Alnemri T, Alnemri ES, Litwack G (1997) The unliganded mineralocorticoid receptor is associated with heat shock proteins 70 and 90 and the immunophilin FKBP-52. Recept Signal Transduction 7:85–98

    CAS  Google Scholar 

  • Brzozowski AM, Pike AC, Dauter Z, Hubbard RE, Bonn T, Engström O, Ohman L, Greene GL, Gustafsson JA, Carlquist M (1997) Molecular basis of agonism and antagonism in the oestrogen receptor. Nature 389(6652):753–758

    CAS  PubMed  Google Scholar 

  • Bulynko YA, O’Malley BW (2011) Nuclear receptor coactivators: structural and functional biochemistry. BioChemistry 50:313–328

    PubMed Central  CAS  PubMed  Google Scholar 

  • Busillo JM, Cidlowski JA (2013) The five Rs of glucocorticoid action during inflammation: ready, reinforce, repress, resolve, and restore. Trends Endocrinol Metab 24(3):109–119

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cluning C, Ward BK, Rea SL, Arulpragasam A, Fuller PJ, Ratajczak T (2013) The helix 1–3 loop in the glucocorticoid receptor LBD is a regulatory element for FKBP cochaperones. Mol Endocrinol 27(7):1020–1035

    CAS  PubMed  Google Scholar 

  • Cato ACB, König H, Ponta H, Herrlich P (1992) Steroids and growth promoting factors in the regulation of expression of genes and gene networks. J Steroid Biochem Mol Biol 43:63–68

    CAS  PubMed  Google Scholar 

  • Chen JD, Evans RM (1995) A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 377:454–457

    CAS  PubMed  Google Scholar 

  • Conway-Campbell BL, McKenna MA, Wiles CC, Atkinson HC, de Kloet ER, Lightman SL (2007) Proteasome-dependent down-regulation of activated nuclear hippocampal glucocorticoid receptors determines dynamic responses to corticosterone. Endocrinology 148:5470–5477

    CAS  PubMed  Google Scholar 

  • Dietz JD, Du S, Bolten CW, Payne MA, Xia C, Blinn JR, Funder JW, Hu X (2008) A number of marketed dihydropyridine calcium channel blockers have mineralocorticoid receptor antagonist activity. Hypertension 51:742–748

    CAS  PubMed  Google Scholar 

  • Dooley R, Harvey BJ, Thomas W (2012) Non-genomic actions of aldosterone: from receptors and signals to membrane targets. Mol Cell Endocrinol 350:223–234

    CAS  PubMed  Google Scholar 

  • Fagart J, Huyet J, Pinon GM, Rochel M, Mayer C, Rafestin-Oblin M-E (2005) Crystal structure of a mutant mineralocorticoid receptor responsible for hypertension. Nat Struct Mol Biol 12:554–555

    CAS  PubMed  Google Scholar 

  • Fagart J, Hillisch A, Huyet J, Barfacker L, Fay M, Pleiss U, Pook E, Schafer S, Rafestin-Oblin M-E, Kolkhof P (2010) A new mode of mineralocorticoid receptor antagonism by a potent and selective nonsteroidal molecule. J Biol Chem 285:29932–29940

    PubMed Central  CAS  PubMed  Google Scholar 

  • Faresse N, Ruffieux-Daidie D, Salamin M, Gomez-Sanchez CE, Staub O (2010) Mineralocorticoid receptor degradation is promoted by Hsp90 inhibition and the ubiquitin-protein ligase CHIP. Am J Physiol Renal Physiol 299:F1462–F1472

    CAS  PubMed  Google Scholar 

  • Feldman RD, Gros R (2013) Vascular effects of aldosterone: sorting out the receptors and the ligands. Clin Exp Pharmacol Physiol 40(12):916–921

    CAS  PubMed  Google Scholar 

  • Feldman D, Funder JW, Edelman IS (1973) Evidence for a new class of corticosterone receptor in the rat kidney. Endocrinology 92:1429–1441

    CAS  PubMed  Google Scholar 

  • Fiebeler A, Schmidt F, Muller DN, Park J-K, Dechend R, Bieringer M, Shagdarsuren E, Breu V, Haller H, Luft FC (2001) Mineralocorticoid receptor affects AP-1 and nuclear factor-{{kappa}}B activation in angiotensin II-induced cardiac injury. Hypertension 37:787–793

    CAS  PubMed  Google Scholar 

  • Fischer K, Kelly SM, Watt K, Price NC, McEwan IJ (2010) Conformation of the mineralocorticoid receptor N-terminal domain: evidence for induced and stable structure. Mol Endocrinol 24:1935–1948

    CAS  PubMed  Google Scholar 

  • Funder JW (1993) Mineralocorticoids, glucocorticoids, receptors and response elements. Science 259(5098):1132–1133

    Google Scholar 

  • Fuse H, Kitagawa H, Kato S (2000) Characterization of transactivational property and coactivator mediation of rat mineralocorticoid receptor activation function-1 (AF-1). Mol Endocrinol 14:889–899

    CAS  PubMed  Google Scholar 

  • Galigniana MD, Echeverria PC, Erlejman AG, Piwien-Pilipuk G (2010a) Role of molecular chaperones and TPR-domain proteins in the cytoplasmic transport of steroid receptors and their passage through the nuclear pore. Nucleus 1:299–308

    PubMed Central  PubMed  Google Scholar 

  • Galigniana MD, Erlejman AG, Monte M, Gomez-Sanchez C, Piwien-Pilipuk G (2010b) The hsp90-FKBP52 complex links the mineralocorticoid receptor to motor proteins and persists bound to the receptor in early nuclear events. Mol Cell Biol 30:1285–1298

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gallo LI, Ghini AA, Pilipuk GP, Galigniana MD (2007) Differential recruitment of tetratricorpeptide repeat domain immunophilins to the mineralocorticoid receptor influences both heat-shock protein 90-dependent retrotransport and hormone-dependent transcriptional activity. BioChemistry 46:14044–14057

    CAS  PubMed  Google Scholar 

  • Geerling JC, Loewy AD (2009) Aldosterone in the brain. Am J Physiol Renal Physiol 297:F559–F576

    PubMed Central  CAS  PubMed  Google Scholar 

  • Geller DS, Farhi A, Pinkerton N, Fradley M, Moritz M, Spitzer A, Meinke G, Tsai FT, sigler PB, Lifton RP (2000) Activating mineralocorticoid receptor mutation in hypertension exacerbated by pregnancy. Science 289:119–123

    CAS  PubMed  Google Scholar 

  • Geserick C, Meyer H-A, Barbulescu K, Haendler B (2003) Differential modulation of androgen receptor action by deoxyribonucleic acid response elements. Mol Endocrinol 17:1738–1750

    CAS  PubMed  Google Scholar 

  • Gomez-Sanchez EP, Venkataraman MT et al (1990) ICV infusion of corticosterone antagoizes ICV-aldosterone hypertension. Am J Physiol 258:E649–E653

    CAS  PubMed  Google Scholar 

  • Govindan MV, Warriar N (1998) Reconstitution of the N-terminal transcription activation function of human mineralocorticoid receptor in a defective human glucocorticoid receptor. J Biol Chem 273:24439–24447

    CAS  PubMed  Google Scholar 

  • Green S, Chambon P (1987) Oestradiol induction of a glucocorticoid-responsive gene by a chimaeric receptor. Nature 325:75–78

    CAS  PubMed  Google Scholar 

  • Groeneweg FL, Karst H, de Kloet ER, Joëls M (2012) Mineralocorticoid and glucocorticoid receptors at the neuronal membrane, regulators of nongenomic corticosteroid signalling. Mol Cell Endocrinol 350:299–309

    CAS  PubMed  Google Scholar 

  • Grossman C, Gekle M (2012) Interaction between mineralocorticoid receptor and epidermal growth factor receptor signaling. Mol Cell Endocrinol 350:235–241

    Google Scholar 

  • Grossman C, Ruhs S, Langenbruch L, Mildenberger S, Strätz N, Schumann K, Gekle M (2012) Nuclear shuttling precedes dimerization in mineralocorticoid receptor signaling. Chem Biol 19:742–751

    Google Scholar 

  • Grossmann C, Krug AW, Freudinger R, Mildenberger S, Voelker K, Gekle M (2007) Aldosterone-induced EGFR expression: interaction between the human mineralocorticoid receptor and the human EGFR promoter. Am J Physiol Endocrinol Metab 292:E1790–E1800

    CAS  PubMed  Google Scholar 

  • Guo C, Ricchiuti V, Lian BQ, Yao TM, Coutinho P, Romero JR, Li J, Williams GH, Adler GK (2008) Mineralocorticoid receptor blockade reverses obesity-related changes in expression of adiponectin, peroxisome proliferator-activated receptor-gamma, and proinflammatory adipokines. Circulation 117(17):2253–2261

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hasui T, Matsunaga N, Ora T, Ohyabu N, Nishigaki N, Imura Y, Igata Y, Matsui H, Motoyaji T, Tanaka T, Habuka N, Sogabe S, Ono M, Siedem CS, Tang TP, Gauthier C, De Meese LA, Boyd SA, Fukumoto S (2011) Identification of benzoxazin-3-one derivatives as novel, potent, and selective nonsteroidal mineralocorticoid receptor antagonists. J Med Chem 54(24):8616–8631

    CAS  PubMed  Google Scholar 

  • He B, Kemppainen JA, Voegel JJ, Gronemeyer H, Wilson EM (1999) Activation function 2 in the human androgen receptor ligand binding domain mediates interdomain communication with the NH2-terminal domain. J Biol Chem 274:37219–37225

    CAS  PubMed  Google Scholar 

  • Heery DM, Kalkhoven E, Hoare S, Parker MG (1997) A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 387:733–736

    CAS  PubMed  Google Scholar 

  • Hirata A, Maeda N, Hiuge A, Hibuse T, Fujita K, Okada T, Kihara S, Funahashi T, Shimomura I (2009) Blockade of mineralocorticoid receptor reverses adipocyte dysfunction and insulin resistance in obese mice. Cardiovasc Res 84(1):164–172

    CAS  PubMed  Google Scholar 

  • Hirschberg D, Jägerbrink T, Samskog J, Gustafsson M, Stählberg M, Alvelius G, Husman B, Carlquist M, Jörnvall H, Bergman T (2004) Detection of phosphorylated peptides in proteomic analyses using microfluidic compact disk technology. Anal Chem 76:5864–5871

    CAS  PubMed  Google Scholar 

  • Horlein AJ, Naar AM, Heinzel T, Torchia J, Gloss B, Kurokawa R, Ryan A, Kamei Y, Soderstrom M, Glass CK et al (1995) Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 377:397–404

    CAS  PubMed  Google Scholar 

  • Hultman ML, Krasnoperova NV, Li S, Du S, Xia C, Dietz JD, Lala DS, Welsch DJ, Hu X (2005) The ligand–dependent interaction of mineralocorticoid receptor with coactivator and corepressor peptides suggests multiple activation mechanisms. Mol Endocrinol 19:1460–1473

    CAS  PubMed  Google Scholar 

  • Huyet J, Pinon GM, Fay MR, Fagart J, Rafestin-Oblin M-E (2007) Structural basis of spirolactone recognition by the mineralocorticoid receptor. Mol Pharmacol 72:563–571

    CAS  PubMed  Google Scholar 

  • Huyet J, Pinon GM, Fay MR, Rafestin-Oblin M-E (2012) Structural determinants of ligand binding to the mineralocorticoid receptor. Mol Cell Endocrinol 350:187–195

    CAS  PubMed  Google Scholar 

  • Iniguez-Lluhi JA, Pearce D (2000) A common motif within the negative regulatory regions of multiple factors inhibits their transcriptional synergy. Mol Cell Biol 20:6040–6050

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jonat C, Rahmsdorf HJ, Park K-K, Cato ACB, Gebel S, Ponta H, Herrlich P (1990) Antitumor promotion and antiinflammation: down-modulation of AP-1 (Fos/Jun) activity by glucocorticoid hormone. Cell 62:1189–1204

    CAS  PubMed  Google Scholar 

  • Juurlink DN, Mamdani MM, Lee DS, Kopp A, Austin PC, Laupacis A, Redelmeier DA (2004) Rates of hyperkalemia after publication of the randomized aldactone evaluation study. New Engl J Med 351:543–551

    CAS  PubMed  Google Scholar 

  • Karst HI, Berger S, Turiault M, Tronche F, Schütz G, Joëls M (2005) Mineralocorticoid receptors are indispensable for nongenomic modulation of hippocampal glutamate transmission by corticosterone. Proc Natl Acad Sci U S A 102:19204–19207

    PubMed Central  CAS  PubMed  Google Scholar 

  • Keightley MC, Curtis AJ, Chu S, Fuller PJ (1998) Structural determinants of cortisol resistance in the guinea pig glucocorticoid receptor. Endocrinology 139:2479–2485

    CAS  PubMed  Google Scholar 

  • Kino T, Jaffe H, Amin ND, Chakrabarti M, Zheng Y-L, Chrousos GP, Pant HC (2010) Cyclin-dependent kinase 5 modulates the transcriptional activity of the mineralocorticoid receptor and regulates expression of brain-derived neurotrophic factor. Mol Endocrinol 24:941–952

    PubMed Central  CAS  PubMed  Google Scholar 

  • Klokk TI, Kurys P, Elbi C, Nagaich AK, Hendarwanto A, Slagsvold T, Chang C-Y, Hager GL, Saatcioglu F (2007) Ligand-specific dynamics of the androgen receptor at its response element in living cells. Mol Cell Biol 27:1823–1843

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kolkhof P, Borden SA (2012) Molecular pharmacology of the mineralocorticoid receptor: prospects for novel therapeutics. Mol Cell Endocrinol 350:310–317

    CAS  PubMed  Google Scholar 

  • Kolla V, Litwack G (2000) Inhibition of mineralocorticoid-mediated transcription by NF-[kappa]B. Arch Biochem Biophys 383:38–45

    CAS  PubMed  Google Scholar 

  • Lalevee S, Ferry C, Rochette-Egly C (2010) Phosphorylation control of nuclear receptors. Methods Mol Biol 647:251–266

    CAS  PubMed  Google Scholar 

  • Langley E, Zhou ZX, Wilson EM (1995) Evidence for an anti-parallel orientation of the ligand-activated human androgen receptor dimer. J Biol Chem 270:29983–29990

    CAS  PubMed  Google Scholar 

  • Lavery DN, McEwan IJ (2005) Structure and function of steroid receptor AF1 transactivation domains: induction of active conformations. Biochem J 391:449–464

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li Y, Suino K, Daugherty J, Xu HE (2005) Structural and biochemical mechanisms for the specificity of hormone binding and coactivator assembly by mineralocorticoid receptor. Mol Cell 19:367–380

    CAS  PubMed  Google Scholar 

  • Liden J, Delaunay F, Rafter I, Gustafsson J-Ãk, Okret S (1997) A new function for the C-terminal zinc finger of the glucocorticoid receptor. J Biol Chem 272:21467–21472

    CAS  PubMed  Google Scholar 

  • Lim-Tio SS, Keightley MC, Fuller PJ (1997) Determinants of specificity of transactivation by the mineralocorticoid or glucocorticoid receptor. Endocrinology 138(6):2537–2543

    CAS  PubMed  Google Scholar 

  • Liu W, Wang J, Sauter NK, Pearce D (1995) Steroid receptor heterodimerization demonstrated in vitro and in vivo. Proc Natl Acad Sci U S A 92:12480–12484

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lombes M, Binart N, Oblin ME, Joulin V, Baulieu EE (1993) Characterization of the interaction of the human mineralocorticosteroid receptor with hormone response elements. Biochem J 292(Pt. 2):577–583

    PubMed Central  CAS  PubMed  Google Scholar 

  • Loven MA, Likhite VS, Choi I, Nardulli AM (2001) Estrogen response elements alter coactivator recruitment through allosteric modulation of estrogen receptor Î2 conformation. J Biol Chem 276:45282–45288

    CAS  PubMed  Google Scholar 

  • Luisi BF, Xu WX, Otwinowski Z, Freedman LP, Yamamoto KR, Sigler PB (1991) Crystallographic analysis of the interaction of the glucocorticoid receptor with DNA. Nature 352:497–505

    CAS  PubMed  Google Scholar 

  • Martinez ED, Pattabiraman N, Danielsen M (2005) Analysis of the hormone-binding domain of steroid receptors using chimeras generated by homologous recombination. Exp Cell Res 308:320–333

    CAS  PubMed  Google Scholar 

  • Marzolla V, Armani A, Zennaro M-C, Cinti F, Mammi C, Fabbri A, Rosano GMC, Caprio M (2012) The role of the mineralocorticoid receptor in adipocyte biology and fat metabolism. Mol Cell Endocrinol 350:281–288

    CAS  PubMed  Google Scholar 

  • Massaad C, Lombès M, Aggerbeck M, Rafestin-Oblin M-E, Barouki R (1997) Cell-specific, promoter-dependent mineralocorticoid agonist activity of spironolactone. Mol Pharmacol 51:285–292

    CAS  PubMed  Google Scholar 

  • McCurley A, Jaffe IZ (2012) Mineralocorticoid receptors in vascular function and disease. Mol Cell Endocrinol 350:256–265

    PubMed Central  CAS  PubMed  Google Scholar 

  • McEneaney V, Dooley R, Yusef YR, Keating N, Quinn U, Harvey BJ, Thomas W (2010) Protein kinase D1 modulates aldosterone-induced ENaC activity in a renal cortical collecting duct cell line. Mol Cell Endocrinol 325:8–17

    CAS  PubMed  Google Scholar 

  • McEwan IJ, Lavery D, Fischer K, Watt K (2007) Natural disordered sequences in the amino terminal domain of nuclear receptors: lessons from the androgen and glucocorticoid receptors. Nucl Recept Signaling [Electronic Resource] E-J NURSA 5:e001

    Google Scholar 

  • McInerney EM, Rose DW, Flynn SE, Westin S, Mullen TM, Krones A, Inostroza J, Torchia J, Nolte RT, Assa-Munt N, Milburn MV, Glass CK, Rosenfeld MG (1998) Determinants of coactivator LXXLL motif specificity in nuclear receptor transcriptional activation. Genes Develop 12:3357–3368

    PubMed Central  CAS  PubMed  Google Scholar 

  • Meijsing SH, Pufall MA, So AY, Bates DL, Chen L, Yamamoto KR (2009) DNA binding site sequence directs glucocorticoid receptor structure and activity. Science 324:407–410

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mètivier R, Stark A, Flouriot G, Hübner MR, Brand H, Penot G, Manu D, Denger S, Reid G, Kos M, Russell RB, Kah O, Pakdel F, Gannon F (2002) A dynamic structural model for estrogen receptor-a activation by ligands, emphasizing the role of interactions between distant A and E domains. Mol Cell 10:1019–1032

    PubMed  Google Scholar 

  • Meyers MJ, Arhancet GB, Hockerman SL, Chen X, Long SA, Mahoney MW, Rico JR, Garland DJ, Blinn JR, Collins JT, Yang S, Huang HC, McGee KF, Wendling JM, Dietz JD, Payne MA, Homer BL, Heron MI, Reitz DB, Hu X (2010) Discovery of (3 S,3aR)-2-(3-chloro-4-cyanophenyl)-3-cyclopentyl-3,3a,4,5-tetrahydro-2H-benzo[g]indazole-7-carboxylic acid (PF-3882845), an orally efficacious mineralocorticoid receptor (MR) antagonist for hypertension and nephropathy. J Med Chem 53(16):5979–6002

    CAS  PubMed  Google Scholar 

  • Mihailidou AS (2006) Nongenomic actions of aldosterone: physiological or pathophysiological role? Steroids 71:277–280

    CAS  PubMed  Google Scholar 

  • Murai-Takeda A, Shibata H, Kurihara I, Kobayashi S, Yokota K, Suda N, Mitsuishi Y, Jo R, Kitagawa H, Kato S, Saruta T, Itoh H (2010) NF–YC functions as a corepressor of agonist-bound mineralocorticoid receptor. J Biol Chem 285:8084–8093

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nakshatri H, Bhat-Nakshatri P, Currie RA (1996) Subunit association and DNA binding activity of the heterotrimeric transcription factor NF–Y is regulated by cellular redox. J Biol Chem 271:28784–28791

    CAS  PubMed  Google Scholar 

  • Nishi M (2010) Imaging of transcription factor trafficking in living cells: lessons from corticosteroid receptor dynamics. Methods Mol Biol 647:199–212

    CAS  PubMed  Google Scholar 

  • Nordeen SK, Bona BJ, Beck CA, Edwards DP, Borror KC, DeFranco DB (1995) The two faces of a steroid antagonist: when an antagonist isn’t. Steroids 60:97–104

    CAS  PubMed  Google Scholar 

  • O’Malley BW (2007) Coregulators: from whence came these “master genes”. Mol Endocrinol 21:1009–1013

    PubMed  Google Scholar 

  • Ou X-M, Storring JM, Kushwaha N, Albert PR (2001) Heterodimerization of mineralocorticoid and glucocorticoid receptors at a novel negative response element of the 5-HT1A receptor gene. J Biol Chem 276:14299–14307

    CAS  PubMed  Google Scholar 

  • Pascual-Le Tallec L, Kirsh O, Lecomte M-C, Viengchareun S, Zennaro M-C, Dejean A, Lombes M (2003) Protein inhibitor of activated signal transducer and activator of transcription 1 interacts with the N-terminal domain of mineralocorticoid receptor and represses its transcriptional activity: Implication of small ubiquitin-related modifier 1 modification. Mol Endocrinol 17:2529–2542

    CAS  Google Scholar 

  • Pascual-Le Tallec L, Simone F, Viengchareun S, Meduri G, Thirman MJ, Lombes M (2005) The elongation factor ELL (eleven-nineteen lysine-rich leukemia) is a selective coregulator for steroid receptor functions. Mol Endocrinol 19:1158–1169

    CAS  PubMed  Google Scholar 

  • Paul A, Garcia YA, Zierer B, Patwardhan C, Gutierrez O, Hildenbrand Z, Harris DC, Balsiger HA, Sivils JC, Johnson JL, Buchner J, Chadli A, Cox MB (2014) The cochaperone SGTA (small glutamine-rich tetratricopeptide repeat-containing protein alpha) demonstrates regulatory specificity for the androgen, glucocorticoid and progesterone receptors. J Biol Chem 289:15297–15308

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pearce D (1994) A mechanistic basis for distinct mineralocorticoid and glucocorticoid receptor transcriptional specificities. Steroids 59:153–159

    CAS  PubMed  Google Scholar 

  • Pearce D, Yamamoto KR (1993) Mineralocorticoid and glucocorticoid receptor activities distinguished by nonreceptor factors at a composite response element. Science 259:1161–1165

    CAS  PubMed  Google Scholar 

  • Pippal J, Fuller P (2008) Structure-function relationships in the mineralocorticoid receptor. J Mol Endocrinol. doi:10.1677/JME-08-0093

    Google Scholar 

  • Pippal JB, Yao Y, Rogerson FM, Fuller PJ (2009) Structural and functional characterization of the interdomain interaction in the mineralocorticoid receptor. Mol Endocrinol 23:1360–1370

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pippal JB, Cheung CMI, Yao Y-Z, Brennan FE, Fuller PJ (2011) Characterization of the zebrafish (Danio rerio) mineralocorticoid receptor. Mol Cell Endocrinol 332:58–66

    CAS  PubMed  Google Scholar 

  • Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A, Palensky J, Wittes J (1999) The randomized aldactone evaluation study (1999) The effect of spironolactone on morbidity and mortality in patients with severe heart failure. New Engl J Med 341:709–717

    CAS  PubMed  Google Scholar 

  • Pitt B, Remme W, Zannad F, Neaton J, Martinez F, Roniker B, Bittman R, Hurley S, Kleiman J, Gatlin M, Eplerenone post-acute myocardial infarction heart failure, and I. Survival study (2003) Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. New Engl J Med 348:1309–1321

    CAS  PubMed  Google Scholar 

  • Pitt B, Kober L, Ponikowski P, Gheorghiade M, Filippatos G, Krum H, Nowack C, Kolkhof P, Kim SY, Zannad F (2013) Safety and tolerability of the novel non-steroidal mineralocorticoid receptor antagonist BAY 94-8862 in patients with chronic heart failure and mild or moderate chronic kidney disease: a randomized, double-blind trial. Eur Heart J 34(31):2453–2463

    PubMed Central  CAS  PubMed  Google Scholar 

  • Poukka H, Karvonen U, Jänne OA, Palvimo JJ (2000a) Covalent modification of the androgen receptor by small ubiquitin-like modifier 1 (SUMO-1). Proc Natl Acad Sci U S A 97:14145–14150

    PubMed Central  CAS  PubMed  Google Scholar 

  • Poukka H, Karvonen U, Janne OA, Palvimo JJ (2000b) Covalent modification of the androgen receptor by small ubiquitin-like modifier 1 (SUMO-1). Proc Natl Acad Sci U S A 97:14145–14150

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pratt WB, Toft DO (1997) Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr Rev 18:306–360

    CAS  PubMed  Google Scholar 

  • Quigley CA, Tan JA, He B, Zhou ZX, Mebarki F, Morel Y, Forest MG, Chatelain P, Ritzèn EM, French FS, Wilson EM (2004) Partial androgen insensitivity with phenotypic variation caused by androgen receptor mutations that disrupt activation function 2 and the NH(2)- and carboxyl-terminal interaction. Mech Ageing Dev 125:683–695

    CAS  PubMed  Google Scholar 

  • Rafestin-Oblin ME, Couette B, Radanyi C, Lombes M, Baulieu EE (1989) Mineralocorticosteroid receptor of the chick intestine. Oligomeric structure and transformation. J Biol Chem 264:9304–9309

    CAS  PubMed  Google Scholar 

  • Rafestin-Oblin ME, Souque A, Bocchi B, Pinon G, Fagart J, Vanderwalle A (2003) The severe form of hypertension caused by the activating S810L mutation in the mineralocorticoid receptor is cortisone related. Endocrinology 144:528–533

    CAS  PubMed  Google Scholar 

  • Ray A, Prefontaine KE (1994) Physical association and functional antagonism between the p65 subunit of transcription factor NF-kappa B and the glucocorticoid receptor. Proc Natl Acad Sci U S A 91:752–756

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rickard AJ, Morgan J, Tesch G, Funder JW, Fuller PJ, Young MJ (2009) Deletion of mineralocorticoid receptors from macrophages protects against DOC/salt-induced cardiac fibrosis and increased blood pressure. Hypertension 54:537–743

    CAS  PubMed  Google Scholar 

  • Rickard AJ, Morgan J, Bienvenu LA, Fletcher EK, Cranston GA, Shen JZ, Reichelt ME, Delbridge LM, Young MJ (2012) Cardiomyocyte mineralocorticoid receptors are essential for deoxycorticosterone/salt-mediated inflammation and cardiac fibrosis. Hypertension 60(6):1443–1450

    CAS  PubMed  Google Scholar 

  • Robin-Jagerschmidt C, Wurtz J-M, Guillot B, Gofflo D, Benhamou B, Vergezac A, Ossart C, Moras D, Phililbert D (2000) Residues in the ligand binding domain that confer progestin or glucocorticoid specificity and modulate the receptor transactivation capacity. Mol Endocrinol 14:1028–1037

    CAS  PubMed  Google Scholar 

  • Rogerson FM, Fuller PJ (2003) Interdomain interactions in the mineralocorticoid receptor. Mol Cell Endocrinol 200:45–55

    CAS  PubMed  Google Scholar 

  • Rogerson FM, Dimopoulos N, Sluka P, Chu S, Curtis AJ, Fuller PJ (1999) Structural determinants of aldosterone binding selectivity in the mineralocorticoid receptor. J Biol Chem 274:36305–36311

    CAS  PubMed  Google Scholar 

  • Rogerson FM, Yao Y-Z, Smith BJ, Dimopoulos N, Fuller PJ (2003) Determinants of spironolactone binding specificity in the mineralocorticoid receptor. J Mol Endocrinol 31:573–582

    CAS  PubMed  Google Scholar 

  • Rogerson FM, Yao Y-Z, Smith BJ, Fuller PJ (2004) Differences in the determinants of eplerenone, spironolactone and aldosterone binding to the mineralocorticoid receptor. Clin Exp Pharmacol Physiol 31:704–709

    CAS  PubMed  Google Scholar 

  • Rogerson FM, Yao Y-Z, Elsass RE, Dimopoulos N, Smith BJ, Fuller PJ (2007) A critical region in the mineralocorticoid receptor for aldosterone binding and activation by cortisol: evidence for a common mechanism governing ligand binding specificity in steroid hormone receptors. Mol Endocrinol 21:817–828

    CAS  PubMed  Google Scholar 

  • Rogerson FM, Yao YZ, Young MJ, Fuller PJ (2014) Identification and characterization of a ligand-selective mineralocorticoid receptor coactivator. FASEB J. doi:10.1096/fj.13-242479. [Epub ahead of print]

    Google Scholar 

  • Rupprecht R, Arriza JL, Spengler D, Reul JM, Evans RM, Holsboer F, Damm K (1993) Transactivation and synergistic properties of the mineralocorticoid receptor: relationship to the glucocorticoid receptor. Mol Endocrinol 7(4):597–603

    CAS  PubMed  Google Scholar 

  • Sato A, Funder JW (1996) High glucose stimulates aldosterone-induced hypertrophy via type I mineralocorticoid receptors in neonatal rat cardiomyocytes. Endocrinol 137:4145–4153

    CAS  Google Scholar 

  • Savory JGA, Prefontaine GG, Lamprecht C, Liao M, Walther RF, Lefebvre YA, Hache RJG (2001) Glucocorticoid receptor homodimers and glucocorticoid mineralocorticoid receptor heterodimers form in the cytoplasm through alternative dimerization interfaces. Mol Cell Biol 21:781–793

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schaufele F, Carbonell X, Guerbadot M, Borngraeber S, Chapman MS, Ma AAK, Miner JN, Diamond MI (2005) The structural basis of androgen receptor activation: intramolecular and intermolecular amino–carboxy interactions. Proc Natl Acad Sci U S A 102:9802–9807

    PubMed Central  CAS  PubMed  Google Scholar 

  • Seeler J-S, Dejean A (2003) Nuclear and unclear functions of SUMO. Nat Rev Mol Cell Biol 4:690–699

    CAS  PubMed  Google Scholar 

  • Shavit L, Lifschitz MD, Epstein M (2012) Aldosterone blockade and the mineralocorticoid receptor in the management of chronic kidney disease: current concepts and emerging treatment paradigms. Kidney Int 81(10):955–968

    CAS  PubMed  Google Scholar 

  • Shibata S, Rinehart J, Zhang J, Moeckel G, Castañeda-Bueno M, Stiegler AL, Boggon TJ, Gamba G, Lifton RP (2013) Mineralocorticoid receptor phosphorylation regulates ligand binding and renal response to volume depletion and hyperkalemia. Cell Metab 18(5):660–671

    PubMed Central  CAS  PubMed  Google Scholar 

  • Stow LR, Gumz ML, Lynch IJ, Greenlee MM, Rudin A, Cain BD, Wingo CS (2009) Aldosterone modulates steroid receptor binding to the endothelin-1 Gene (edn1). J Biol Chem 284:30087–30096

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sturm A, Bury N, Dengreville L, Fagart J, Flouriot G, Rafestin-Oblin ME, Prunet P (2005) 11-deoxycorticosterone is a potent agonist of the rainbow trout (Oncorhynchus mykiss) mineralocorticoid receptor. Endocrinology 146:47–55

    CAS  PubMed  Google Scholar 

  • Tan J-A, Hall SH, Hamil KG, Grossman G, Petrusz P, Liao J, Shuai K, French FS (2000) Protein inhibitor of activated STAT-1 (signal transducer and activator of transcription-1) is a nuclear receptor coregulator expressed in human testis. Mol Endocrinol 14:14–26

    CAS  PubMed  Google Scholar 

  • Tetel MJ, Giangrande PH, Leonhardt SA, McDonnell DP, Edwards DP (1999) Hormone-dependent interaction between the amino- and carboxyl-terminal domains of progesterone receptor in vitro and in vivo. Mol Endocrinol 13:910–924

    CAS  PubMed  Google Scholar 

  • Thompson J, Saatcioglu F, Janne OA, Palvimo JJ (2001) Disrupted amino- and carboxyl–terminal interactions of the androgen receptor are linked to androgen insensitivity. Mol Endocrinol 15:923–935

    CAS  PubMed  Google Scholar 

  • Tian S, Poukka H, Palvimo JJ, Jänne OA (2002) Small ubiquitin-related modifier-1 (SUMO-1) modification of the glucocorticoid receptor. Biochem J 367:907–911

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tirard M, Jasbinsek J, Almeida OF, Michaelidis TM (2004) The manifold actions of the protein inhibitor of activated STAT proteins on the transcriptional activity of mineralocorticoid and glucocorticoid receptors in neural cells. J Mol Endocrinol 32:825–841

    CAS  PubMed  Google Scholar 

  • Tirard M, Almeida OFX, Hutzler P, Melchior F, Michaelidis TM (2007) Sumoylation and proteasomal activity determine the transactivation properties of the mineralocorticoid receptor. Mol Cell Endocrinol 268:20–29

    CAS  PubMed  Google Scholar 

  • Trapp T, Rupprecht R, Castrén M, Reul JMHM, Holsboer F (1994) Heterodimerization between mineralocorticoid and glucocorticoid receptor: a new principle of glucocorticoid action in the CNS. Neuron 13:1457–1462

    CAS  PubMed  Google Scholar 

  • Tsuji M (2013) Local motifs involved in the canonical structure of the ligand-binding domain in the nuclear receptor superfamily. J Struct Biol. doi:org/10.1016/jjsb.2013.12.007

    Google Scholar 

  • Viengchareun S, Le Menuet D, Martinerie L, Munier M, Pascual-Le Tallec L, Lombes M (2007) The mineralocorticoid receptor: insights into its molecular and (patho)physiological biology. Nucl Recept Signaling [Electronic Resource] E-J NURSA 5:e012

    Google Scholar 

  • Vivat V, Gofflo D, Wurtz J-M, Bourguet W, Philibert D, Gronemeyer H (1997) Sequences in the ligand-binding domains of the human androgen and progesterone receptors which determine their distinct ligand identities. J Mol Endocrinol 18:147–160

    CAS  PubMed  Google Scholar 

  • Vlassi M, Brauns K, Andrade-Nararro MA (2013) Short tandem repeats in the inhibitory domain of the mineralocorticoid receptor: prediction of a b-solenoid structure. BMC Struct Biol 13:17. doi:10.1186/1472-6807-13-17

    PubMed Central  CAS  PubMed  Google Scholar 

  • Walther RF, Atlas E, Carrigan A, Rouleau Y, Edgecombe A, Visentin L, Lamprecht C, Addicks GC, Hache RJG, Lefebvre YA (2005) A serine/threonine-rich motif is one of three nuclear localization signals that determine unidirectional transport of the mineralocorticoid receptor to the nucleus. J Biol Chem 280:17549–17561

    CAS  PubMed  Google Scholar 

  • Wang Q, Anzick S, Richter WF, Meltzer P, Simons SS Jr (2004) Modulation of transcriptional sensitivity of mineralocorticoid and estrogen receptors. J Steroid Biochem Mol Biol 91:197–210

    CAS  PubMed  Google Scholar 

  • Wochnik GM, Räegg J, Abel GA, Schmidt U, Holsboer F, Rein T (2005) FK506-binding proteins 51 and 52 differentially regulate dynein interaction and nuclear translocation of the glucocorticoid receptor in mammalian cells. J Biol Chem 280:4609–4616

    CAS  PubMed  Google Scholar 

  • Yang J, Fuller PJ (2012) Interactions of the mineralocorticoid receptor—within and without, 2012. Mol Cell Endocrinol 350:196–205

    CAS  PubMed  Google Scholar 

  • Yang J, Young MJ (2009) The mineralocorticoid receptor and its coregulators. J Mol Endocrinol 43:53–64

    CAS  PubMed  Google Scholar 

  • Yang J, Chang C-Y, Safi R, Morgan J, McDonnell DP, Fuller PJ, Clyne CD, Young MJ (2011) Identification of ligand-selective peptide antagonists of the mineralocorticoid receptor using phage display. Mol Endocrinol 25:32–43

    PubMed  Google Scholar 

  • Yang J, Fuller PJ, Morgan J, Shibata H, McDonnell DP, Clyne CD, Young MJ (2014) Use of phage display to identify novel mineralocorticoid receptor-interacting proteins. Mol Endocrinol. doi:10.1210/me20141101. [Epub ahead of print]

    Google Scholar 

  • Yokota K, Shibata H, Kurihara I, Kobayashi S, Suda N, Murai-Takeda A, Saito I, Kitagawa H, Kato S, Saruta T, Itoh H (2007) Coactivation of the N-terminal transactivation of mineralocorticoid receptor by Ubc9. J Biol Chem 282:1998–2010

    CAS  PubMed  Google Scholar 

  • Young MJ, Rickard AJ (2012) Mechanisms of mineralocorticoid salt-induced hypertension and cardiac fibrosis. Mol Cell Endocrinol 350:248–255

    CAS  PubMed  Google Scholar 

  • Zannad F, McMurray JJV, Krum H, van Veldhuisen DJ, Swedberg K, Shi H, Vincent J, Pocock SJ, Pitt B (2010) Eplerenone in patients with systolic heart failure and mild symptoms. New Engl J Med 364:11–21

    PubMed  Google Scholar 

  • Zhang J, Geller DS (2008) Helix 3-helix 5 interactions in steroid hormone receptor function. J Steroid Biochem Mol Biol 109(3–5):279–285

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang J, Simisky J, Tsai FT, Geller DS (2005) A critical role of helix 30helix 5 interaction in steroid hormone receptor function. Proc Natl Acad Sci U S A 102:2707–2712

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou ZX, Lane MV, Kemppainen JA, French FS, Wilson EM (1995) Specificity of ligand-dependent androgen receptor stabilization: receptor domain interactions influence ligand dissociation and receptor stability. Mol Endocrinol 9:208–218

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Claudette Thiedeman for preparation of the manuscript. This work was supported by the National Health & Medical Research Council of Australia through a Senior Principal Research Fellowship to PJF (#1002559). MIMR-PHI Institute is supported by the Victorian Government’s Operational Infrastructure Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Fuller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fuller, P., Yang, J., Young, M. (2015). Corticosteroid Receptors. In: McEwan, I., Kumar, R. (eds) Nuclear Receptors: From Structure to the Clinic. Springer, Cham. https://doi.org/10.1007/978-3-319-18729-7_2

Download citation

Publish with us

Policies and ethics