Skip to main content

Twenty-five Years of Nuclear Receptor Structure Analysis: From the Laboratory to the Clinic

  • Chapter
  • First Online:

Abstract

High resolution structural analysis of nuclear receptors has been possible for the last twenty-five years. During this period we have moved from a schematic representation of nuclear receptors, based on biochemical studies, to crystal and NMR structures of the isolated ligand binding and DNA binding domains, which have increased our understanding of receptor structure and provided fresh insights into function. Recent progress has seen the emergence of almost complete three-dimensional descriptions for nuclear receptor complexes bound to cognate response elements. These dramatic advances in structural analysis are paralleled by the growing evidence linking nuclear receptor function to normal physiological processes and disease. The insights gained from nuclear receptor structures have the potential to be translated into new drugs for major diseases, including cancer, metabolic syndrome and cardiovascular disease.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Askew EB, Gampe RT Jr, Stanley TB, Faggart JL, Wilson EM (2007) Modulation of androgen receptor activation function 2 by testosterone and dihydrotestosterone. J Biol Chem 282(35): 25801–25816

    Google Scholar 

  • Bohl CE, Wu Z, Chen J, Mohler ML, Yang J, Hwang DJ, Mustafa S, Miller DD, Bell CE, Dalton JT (2008) Effect of B-ring substitution pattern on binding mode of propionamide selective androgen receptor modulators. Bioorg Med Chem Lett 18:5567–5570

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bourguet W, Ruff M, Chambon P, Gronemeyer H, Moras D (1995) Crystal structure of the ligand-binding domain of the human nuclear receptor RXR-alpha. Nature 375:377–382

    Article  CAS  PubMed  Google Scholar 

  • Brzozowski AM, Pike AC, Dauter Z, Hubbard RE, Bonn T, Engstrom O, Ohman L, Greene GL, Gustafsson JA, Carlquist M (1997) Molecular basis of agonism and antagonism in the oestrogen receptor. Nature 389:753–758

    Article  CAS  PubMed  Google Scholar 

  • Carlstedt-Duke J, Okret S, Wrange O, Gustafsson JA (1982) Immunochemical analysis of the glucocorticoid receptor: identification of a third domain separate from the steroid-binding and DNA-binding domains. Proc Natl Acad Sci USA 79:4260–4264

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chandra V, Huang P, Hamuro Y, Raghuram S, Wang Y, Burris TP, Rastinejad F (2008) Structure of the intact PPAR-gamma-RXR- nuclear receptor complex on DNA. Nature 456:350–356

    Article  PubMed Central  PubMed  Google Scholar 

  • Chandra V, Huang P, Potluri N, Wu D, Kim Y, Rastinejad F (2013) Multidomain integration in the structure of the HNF-4alpha nuclear receptor complex. Nature 495:394–398

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Claessens F, Gewirth DT (2004) DNA recognition by nuclear receptors. Essays Biochem 40:59–72

    Article  CAS  PubMed  Google Scholar 

  • Darimont BD, Wagner RL, Apriletti JW, Stallcup MR, Kushner PJ, Baxter JD, Fletterick RJ, Yamamoto KR (1998) Structure and specificity of nuclear receptor-coactivator interactions. Genes Dev 12:3343–3356

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dubbink HJ, Hersmus R, Verma CS, van der Korput HA, Berrevoets CA, van Tol J, Ziel-van der Made AC, Brinkmann AO, Pike AC, Trapman J (2004) Distinct recognition modes of FXXLF and LXXLL motifs by the androgen receptor. Mol Endocrinol 18:2132–2150

    Article  CAS  PubMed  Google Scholar 

  • Duff J, McEwan IJ (2005) Mutation of Histidine 874 in the Androgen Receptor Ligand-Binding Domain Leads to Promiscuous Ligand Activation and Altered p160 Coactivator Interactions. Mol Endocrinol 19:2943–2954

    Article  CAS  PubMed  Google Scholar 

  • Egea PF, Klaholz BP, Moras D (2000) Ligand-protein interactions in nuclear receptors of hormones. FEBS Lett 476:62–67

    Article  CAS  PubMed  Google Scholar 

  • Estebanez-Perpina E, Arnold LA, Nguyen P, Rodrigues ED, Mar E, Bateman R, Pallai P, Shokat KM, Baxter JD, Guy RK, Webb P, Fletterick RJ (2007) A surface on the androgen receptor that allosterically regulates coactivator binding. Proc Natl Acad Sci USA 104:16074–16079

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Evans RM (1988) The steroid and thyroid hormone receptor superfamily. Science 240:889–895

    Article  CAS  PubMed  Google Scholar 

  • Gallastegui N, Mackinnon JA, Fletterick RJ, Estebanez-Perpina E (2015) Advances in our structural understanding of orphan nuclear receptors. Trends Biochem Sci 40:25–35

    Article  CAS  PubMed  Google Scholar 

  • Green S, Chambon P (1989) Chimeric receptors used to probe the DNA-binding domain of the estrogen and glucocorticoid receptors. Cancer Res 49:2282s–2285s

    CAS  PubMed  Google Scholar 

  • Green S, Kumar V, Theulaz I, Wahli W, Chambon P (1988) The N-terminal DNA-binding ‘zinc finger’ of the oestrogen and glucocorticoid receptors determines target gene specificity. EMBO J 7:3037–3044

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gurnell M, Chatterjee VK (2004) Nuclear receptors in disease: thyroid receptor beta, peroxisome-proliferator-activated receptor gamma and orphan receptors. Essays Biochem 40:169–189

    Article  CAS  PubMed  Google Scholar 

  • Haendler B, Cleve A (2012) Recent developments in antiandrogens and selective androgen receptor modulators. Mol Cell Endocrinol 352:79–91

    Article  CAS  PubMed  Google Scholar 

  • Hard T, Kellenbach E, Boelens R, Maler BA, Dahlman K, Freedman LP, Carlstedt-Duke J, Yamamoto KR, Gustafsson JA, Kaptein R (1990) Solution structure of the glucocorticoid receptor DNA-binding domain. Science 249:157–160

    Article  CAS  PubMed  Google Scholar 

  • He B, Gampe RT, Jr, Kole AJ, Hnat AT, Stanley TB, An G, Stewart EL, Kalman RI, Minges JT, Wilson EM (2004) Structural basis for androgen receptor interdomain and coactivator interactions suggests a transition in nuclear receptor activation function dominance. Mol Cell 16:425–438

    Article  CAS  PubMed  Google Scholar 

  • He B, Gampe RT, Jr, Hnat AT, Faggart JL, Minges JT, French FS, Wilson EM (2006) Probing the functional link between androgen receptor coactivator and ligand-binding sites in prostate cancer and androgen insensitivity. J Biol Chem 281:6648–6663

    Article  CAS  PubMed  Google Scholar 

  • Heery DM, Kalkhoven E, Hoare S, Parker MG (1997) A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 387:733–736

    Article  CAS  PubMed  Google Scholar 

  • Huang P, Chandra V, Rastinejad F (2010) Structural overview of the nuclear receptor superfamily: insights into physiology and therapeutics. Annu Rev Physiol 72:247–272

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hudson WH, Youn C, Ortlund EA (2014) Crystal structure of the mineralocorticoid receptor DNA binding domain in complex with DNA. PLoS ONE 9:e107000

    Article  PubMed Central  PubMed  Google Scholar 

  • Hur E, Pfaff SJ, Payne ES, Gron H, Buehrer BM, Fletterick RJ (2004) Recognition and accommodation at the androgen receptor coactivator binding interface. PLoS Biol 2:E274

    Article  PubMed Central  PubMed  Google Scholar 

  • Kallenberger BC, Love JD, Chatterjee VK, Schwabe JW (2003) A dynamic mechanism of nuclear receptor activation and its perturbation in a human disease. Nat Struct Biol 10:136–140

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, McEwan IJ (2012) Allosteric modulators of steroid hormone receptors: structural dynamics and gene regulation. Endocr Rev 33:271–299

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lack NA, Axerio-Cilies P, Tavassoli P, Han FQ, Chan KH, Feau C, LeBlanc E, Guns ET, Guy RK, Rennie PS, Cherkasov A (2011) Targeting the binding function 3 (BF3) site of the human androgen receptor through virtual screening. J Med Chem 54:8563–8573

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lou X, Toresson G, Benod C, Suh JH, Philips KJ, Webb P, Gustafsson JA (2014) Structure of the retinoid X receptor alpha-liver X receptor beta (RXRalpha-LXRbeta) heterodimer on DNA. Nat Struct Mol Biol 21:277–281

    Article  CAS  PubMed  Google Scholar 

  • McDonnell DP (2000) Selective estrogen receptor modulators (SERMs): a first step in the development of perfect hormone replacement therapy regimen. J Soc Gynecol Investig 7:S10–S15

    Article  CAS  PubMed  Google Scholar 

  • McEwan IJ (2013) Androgen receptor modulators: a marriage of chemistry and biology. Future Med Chem 5:1109–1120

    Article  CAS  PubMed  Google Scholar 

  • Meijsing SH, Pufall MA, So AY, Bates DL, Chen L, Yamamoto KR (2009) DNA binding site sequence directs glucocorticoid receptor structure and activity. Science 324:407–410

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nagy L, Schwabe JW (2004) Mechanism of the nuclear receptor molecular switch. Trends Biochem Sci 29:317–324

    Article  CAS  PubMed  Google Scholar 

  • Nagy L, Kao HY, Love JD, Li C, Banayo E, Gooch JT, Krishna V, Chatterjee K, Evans RM, Schwabe JW (1999) Mechanism of corepressor binding and release from nuclear hormone receptors. Genes Dev 13:3209–3216

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Narayanan R, Mohler ML, Bohl CE, Miller DD, Dalton JT (2008) Selective androgen receptor modulators in preclinical and clinical development. Nucl Recept Signal 6:e010

    PubMed Central  PubMed  Google Scholar 

  • Nettles KW, Sun J, Radek JT, Sheng S, Rodriguez AL, Katzenellenbogen JA, Katzenellenbogen BS, Greene GL (2004) Allosteric control of ligand selectivity between estrogen receptors alpha and beta: implications for other nuclear receptors. Mol Cell 13:317–327

    Article  CAS  PubMed  Google Scholar 

  • Oberoi J, Fairall L, Watson PJ, Yang JC, Czimmerer Z, Kampmann T, Goult BT, Greenwood JA, Gooch JT, Kallenberger BC, Nagy L, Neuhaus D, Schwabe JW (2011) Structural basis for the assembly of the SMRT/NCoR core transcriptional repression machinery. Nat Struct Mol Biol 18:177–184

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ostrowski J, Kuhns JE, Lupisella JA, Manfredi MC, Beehler BC, Krystek SR, Jr, Bi Y, Sun C, Seethala R, Golla R, Sleph PG, Fura A, An Y, Kish KF, Sack JS, Mookhtiar KA, Grover GJ, Hamann LG (2007) Pharmacological and x-ray structural characterization of a novel selective androgen receptor modulator: potent hyperanabolic stimulation of skeletal muscle with hypostimulation of prostate in rats. Endocrinology 148:4–12

    Article  CAS  PubMed  Google Scholar 

  • Pavlin MR, Brunzelle JS, Fernandez EJ (2014) Agonist ligands mediate the transcriptional response of nuclear receptor heterodimers through distinct stoichiometric assemblies with coactivators. J Biol Chem 289:24771–24778

    Article  CAS  PubMed  Google Scholar 

  • Pike AC, Brzozowski AM, Hubbard RE, Bonn T, Thorsell AG, Engstrom O, Ljunggren J, Gustafsson JA, Carlquist M (1999) Structure of the ligand-binding domain of oestrogen receptor beta in the presence of a partial agonist and a full antagonist. EMBO J 18:4608–4618

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pike AC, Brzozowski AM, Hubbard RE (2000) A structural biologist’s view of the oestrogen receptor. J Steroid Biochem Mol Biol 74:261–268

    Article  CAS  PubMed  Google Scholar 

  • Putcha BD, Fernandez EJ (2009) Direct interdomain interactions can mediate allosterism in the thyroid receptor. J Biol Chem 284:22517–22524

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rastinejad F, Huang P, Chandra V, Khorasanizadeh S (2013) Understanding nuclear receptor form and function using structural biology. J Mol Endocrinol 51:T1–T21

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Renaud JP, Rochel N, Ruff M, Vivat V, Chambon P, Gronemeyer H, Moras D (1995) Crystal structure of the RAR-gamma ligand-binding domain bound to all-trans retinoic acid. Nature 378:681–689

    Article  CAS  PubMed  Google Scholar 

  • Rochel N, Ciesielski F, Godet J, Moman E, Roessle M, Peluso-Iltis C, Moulin M, Haertlein M, Callow P, Mely Y, Svergun DI, Moras D (2011) Common architecture of nuclear receptor heterodimers on DNA direct repeat elements with different spacings. Nat Struct Mol Biol 18:564–570

    Article  CAS  PubMed  Google Scholar 

  • Roemer SC, Donham DC, Sherman L, Pon VH, Edwards DP, Churchill ME (2006) Structure of the progesterone receptor-deoxyribonucleic acid complex: novel interactions required for binding to half-site response elements. Mol Endocrinol 20:3042–3052

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schwabe JW, Neuhaus D, Rhodes D (1990) Solution structure of the DNA-binding domain of the oestrogen receptor. Nature 348:458–461

    Article  CAS  PubMed  Google Scholar 

  • Schwabe JW, Chapman L, Finch JT, Rhodes D (1993) The crystal structure of the estrogen receptor DNA-binding domain bound to DNA: how receptors discriminate between their response elements. Cell 75:567–578

    Article  CAS  PubMed  Google Scholar 

  • Shaffer PL, Jivan A, Dollins DE, Claessens F, Gewirth DT (2004) Structural basis of androgen receptor binding to selective androgen response elements. Proc Natl Acad Sci USA 101:4758–4763

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shiau AK, Barstad D, Loria PM, Cheng L, Kushner PJ, Agard DA, Greene GL (1998) The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell 95:927–937

    Google Scholar 

  • Tanenbaum DM, Wang Y, Williams SP, Sigler PB (1998) Crystallographic comparison of the estrogen and progesterone receptor’s ligand binding domains. Proc Natl Acad Sci USA 95:5998–6003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang F, Liu XQ, Li H, Liang KN, Miner JN, Hong M, Kallel EA, van Oeveren A, Zhi L, Jiang T (2006) Structure of the ligand-binding domain (LBD) of human androgen receptor in complex with a selective modulator LGD2226. Acta Crystallogr Sect F Struct Biol Cryst Commun 62:1067–1071

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Watson LC, Kuchenbecker KM, Schiller BJ, Gross JD, Pufall MA, Yamamoto KR (2013) The glucocorticoid receptor dimer interface allosterically transmits sequence-specific DNA signals. Nat Struct Mol Biol 20:876–883

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wrange O, Gustafsson JA (1978) Separation of the hormone- and DNA-binding sites of the hepatic glucocorticoid receptor by means of proteolysis. J Biol Chem 253:856–865

    CAS  PubMed  Google Scholar 

  • Yi P, Wang Z, Feng Q, Pintilie GD, Foulds CE, Lanz RB, Ludtke SJ, Schmid MF, Chiu W, O'Malley BW (2015) Structure of a biologically active estrogen receptor-coactivator complex on DNA. Mol Cell 57(6):1047–1058

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Chalmers MJ, Stayrook KR, Burris LL, Wang Y, Busby SA, Pascal BD, Garcia-Ordonez RD, Bruning JB, Istrate MA, Kojetin DJ, Dodge JA, Burris TP, Griffin PR (2011) DNA binding alters coactivator interaction surfaces of the intact VDR-RXR complex. Nat Struct Mol Biol 18:556–563

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Work in IJM laboratory is supported by funding from the Chief Scientists Office (CSO) of the Scottish Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iain J. McEwan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

McEwan, I., Kumar, R. (2015). Twenty-five Years of Nuclear Receptor Structure Analysis: From the Laboratory to the Clinic. In: McEwan, I., Kumar, R. (eds) Nuclear Receptors: From Structure to the Clinic. Springer, Cham. https://doi.org/10.1007/978-3-319-18729-7_1

Download citation

Publish with us

Policies and ethics