Skip to main content

Binary Partition Trees-Based Spectral-Spatial Permutation Ordering

  • Conference paper
Book cover Mathematical Morphology and Its Applications to Signal and Image Processing (ISMM 2015)

Abstract

Mathematical Morphology (MM) is founded on the mathematical branch of Lattice Theory. Morphological operations can be described as mappings between complete lattices, and complete lattices are a type of partially-ordered sets (poset). Thus, the most elementary requirement to define morphological operators on a data domain is to establish an ordering of the data. MM has been very successful defining image operators and filters for binary and gray-scale images, where it can take advantage of the natural ordering of the sets \(\left\lbrace 0,1 \right\rbrace\) and ℝ. For multivariate data, i.e. RGB or hyperspectral images, there is no natural ordering. Thus, other orderings such as reduced orderings (R-orderings) have been proposed. Anyway, all these orderings are based solely on sorting the spectral set of values. Here, we propose to define an ordering based on both, the spectral and the spatial information, by means of a binary partition tree (BPT) representation of images. The proposed ordering aims to find a permutation of the pixel indexes, that is, a sorting of the pixels arrangement in the data matrix. Morphological operations using the proposed ordering are able to enlarge (shrink) spatial structures independently of their spectral values, as far as the spatial structures are encoded in the BPT representation. We provide examples of potential use of the proposed ordering using binary and RGB images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angulo, J.: Morphological colour operators in totally ordered lattices based on distances: Application to image filtering, enhancement and analysis. Comput. Vis. Image Underst. 107(1-2), 56–73 (2007), http://dl.acm.org/citation.cfm?id=1265986.1266116

    Article  Google Scholar 

  2. Aptoula, E., Lefevre, S.: A comparative study on multivariate mathematical morphology. Pattern Recogn 40(11), 2914–2929 (2007), http://dl.acm.org/citation.cfm?id=1274191.1274319

    Article  MATH  Google Scholar 

  3. Banon, G., Barrera, J.: Decomposition of mappings between complete lattices by mathematical morphology, part i. general lattices. Signal Processing 30(3), 299–327 (1993), http://www.sciencedirect.com/science/article/pii/0165168493900153

    Article  MATH  Google Scholar 

  4. Barnett: The ordering of multivariate data. Journal of The Royal Statistical Society Series A General 139(3), 318–355 (1976)

    Article  MathSciNet  Google Scholar 

  5. Birkhoff, G.: Lattice theory. AMS Bookstore (1995)

    Google Scholar 

  6. Calderero, F., Marques, F.: Region merging techniques using information theory statistical measures. IEEE Transactions on Image Processing 19(6), 1567–1586 (2010)

    Article  MathSciNet  Google Scholar 

  7. Goutsias, J., Heijmans, H.: Mathematical Morphology. IOS Press (January 2000)

    Google Scholar 

  8. Gratzer, G.: General Lattice Theory, 2nd edn. Birkhäuser, Basel (2003)

    Google Scholar 

  9. Gratzer, G.: Lattice Theory: Foundation, 1st edn. Springer, Basel (2011)

    Book  Google Scholar 

  10. Haralick, R., Sternberg, S., Zhuang, X.: Image analysis using mathematical morphology. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-9(4), 532–550 (1987)

    Article  Google Scholar 

  11. Hawkes, P.W., Heijmans, H.J.A.M., Kazan, B.: Morphological Image Operators. Academic Press (December 1993)

    Google Scholar 

  12. Pitas, I., Tsakalides, P.: Multivariate ordering in color image filtering. IEEE Transactions on Circuits and Systems for Video Technology 1(3), 247– 259, 295–296 (1991)

    Google Scholar 

  13. Ronse, C.: Why mathematical morphology needs complete lattices. Signal Processing 21(2), 129–154 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  14. Salembier, P., Garrido, L.: Binary partition tree as an efficient representation for image processing, segmentation, and information retrieval. IEEE Transactions on Image Processing 9(4), 561–576 (2000)

    Article  Google Scholar 

  15. Serra, J.: Image Analysis and Mathematical Morphology, vol. 1. Image Analysis & Mathematical Morphology Series). Academic Press (February 1984)

    Google Scholar 

  16. Serra, J.: Image Analysis and Mathematical Morphology, Vol. 2: Theoretical Advances, 1st edn. Academic Press (February 1988)

    Google Scholar 

  17. Serra, J.: Anamorphoses and function lattices. In: Proceedings of SPIE, vol. 2030, pp. 2–11 (1993)

    Google Scholar 

  18. Soille, P.: Morphological Image Analysis: Principles and Applications, 2nd edn. Springer (2004)

    Google Scholar 

  19. Tochon, G., Feret, J., Martin, R.E., Tupayachi, R., Chanussot, J., Asner, G.P.: Binary partition tree as a hyperspectral segmentation tool for tropical rainforests. In: 2012 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 6368–6371 (2012)

    Google Scholar 

  20. Tochon, G., Féret, J.B., Valero, S., Martin, R.E., Knapp, D.E., Salembier, P., Chanussot, J., Asner, G.P.: On the use of binary partition trees for the tree crown segmentation of tropical rainforest hyperspectral images. Remote Sensing of Environment 159, 318–331 (2015)

    Article  Google Scholar 

  21. Valero, S., Salembier, P., Chanussot, J.: Comparison of merging orders and pruning strategies for binary partition tree in hyperspectral data. In: 2010 17th IEEE International Conference on Image Processing (ICIP), pp. 2565–2568. IEEE (2010)

    Google Scholar 

  22. Valero, S., Salembier, P., Chanussot, J.: Hyperspectral image representation and processing with binary partition trees. IEEE Transactions on Image Processing 22(4), 1430–1443 (2013)

    Article  MathSciNet  Google Scholar 

  23. Veganzones, M., Tochon, G., Dalla-Mura, M., Plaza, A., Chanussot, J.: Hyperspectral image segmentation using a new spectral unmixing-based binary partition tree representation. IEEE Transactions on Image Processing 23(8), 3574–3589 (2014)

    Article  MathSciNet  Google Scholar 

  24. Velasco-Forero, S., Angulo, J.: Supervised ordering in R p: Application to morphological processing of hyperspectral images. IEEE Transactions on Image Processing 20(11), 3301–3308 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Ángel Veganzones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Veganzones, M.Á., Dalla Mura, M., Tochon, G., Chanussot, J. (2015). Binary Partition Trees-Based Spectral-Spatial Permutation Ordering. In: Benediktsson, J., Chanussot, J., Najman, L., Talbot, H. (eds) Mathematical Morphology and Its Applications to Signal and Image Processing. ISMM 2015. Lecture Notes in Computer Science(), vol 9082. Springer, Cham. https://doi.org/10.1007/978-3-319-18720-4_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18720-4_37

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18719-8

  • Online ISBN: 978-3-319-18720-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics