Skip to main content

Abstract

Mathematical morphology has traditionally been grounded in lattice theory. For non-scalar data lattices often prove too restrictive, however. In this paper we present a more general alternative, sponges, that still allows useful definitions of various properties and concepts from morphological theory. It turns out that some of the existing work on “pseudo-morphology” for non-scalar data can in fact be considered “proper” mathematical morphology in this new framework, while other work cannot, and that this correlates with how useful/intuitive some of the resulting operators are.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angulo, J.: Supremum/Infimum and Nonlinear Averaging of Positive Definite Symmetric Matrices. In: Nielsen, F., Bhatia, R. (eds.) Matrix Information Geometry, pp. 3–33. Springer, Heidelberg (2013)

    Google Scholar 

  2. Angulo, J., Lefèvre, S., Lezoray, O.: Color Representation and Processing in Polar Color Spaces. In: Fernandez-Maloigne, C., Robert-Inacio, F., Macaire, L. (eds.) Digital Color Imaging, chap. 1, pp. 1–40. John Wiley & Sons, Inc., Hoboken (2012)

    Google Scholar 

  3. Angulo, J., Velasco-Forero, S.: Complete Lattice Structure of Poincaré Upper-Half Plane and Mathematical Morphology for Hyperbolic-Valued Images. In: Nielsen, F., Barbaresco, F. (eds.) GSI 2013. LNCS, vol. 8085, pp. 535–542. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  4. Aptoula, E., Lefèvre, S.: On the morphological processing of hue. Image Vis. Comput. 27(9), 1394–1401 (2009)

    Article  Google Scholar 

  5. Astola, J., Haavisto, P., Neuvo, Y.: Vector median filters. Proc. IEEE 78(4), 678–689 (1990)

    Article  Google Scholar 

  6. Burgeth, B., Bruhn, A., Didas, S., Weickert, J., Welk, M.: Morphology for matrix data: Ordering versus PDE-based approach. Image Vis. Comput. 25(4), 496–511 (2007)

    Article  Google Scholar 

  7. Burgeth, B., Kleefeld, A.: Morphology for Color Images via Loewner Order for Matrix Fields. In: Hendriks, C.L.L., Borgefors, G., Strand, R. (eds.) ISMM 2013. LNCS, vol. 7883, pp. 243–254. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  8. Burgeth, B., Kleefeld, A.: An approach to color-morphology based on Einstein addition and Loewner order. Pattern Recognit. Lett. 47, 29–39 (2014)

    Article  Google Scholar 

  9. Burgeth, B., Papenberg, N., Bruhn, A., Welk, M., Feddern, C., Weickert, J.: Morphology for Higher-Dimensional Tensor Data Via Loewner Ordering. In: Ronse, C., Najman, L., Decencière, E. (eds.) Mathematical Morphology: 40 Years On, Computational Imaging and Vision, vol. 30, pp. 407–416. Springer, Netherlands (2005)

    Chapter  Google Scholar 

  10. Burgeth, B., Welk, M., Feddern, C., Weickert, J.: Morphological Operations on Matrix-Valued Images. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 155–167. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Burgeth, B., Welk, M., Feddern, C., Weickert, J.: Mathematical Morphology on Tensor Data Using the Loewner Ordering. In: Weickert, J., Hagen, H. (eds.) Visualization and Processing of Tensor Fields. Math. Vis, pp. 357–368. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Chevallier, E., Angulo, J.: Optimized total order for mathematical morphology on metric spaces. Tech. rep., Centre de Morphologie Mathématique, MINES ParisTech (2014)

    Google Scholar 

  13. Fried, E.: Weakly associative lattices with join and meet of several elements. Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 16, 93–98 (1973)

    MathSciNet  Google Scholar 

  14. Fried, E., Grätzer, G.: A nonassociative extension of the class of distributive lattices. Pacific J. Math. 49(1), 59–78 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  15. Fried, E., Grätzer, G.: Some examples of weakly associative lattices. Colloq. Math. 27, 215–221 (1973)

    MATH  MathSciNet  Google Scholar 

  16. Fried, E., Grätzer, G.: Partial and free weakly associative lattices. Houston J. Math. 2(4), 501–512 (1976)

    MATH  MathSciNet  Google Scholar 

  17. Gomila, C., Meyer, F.: Levelings in vector spaces. In: Int. Conf. Image Proc., vol. 2, pp. 929–933. IEEE (1999)

    Google Scholar 

  18. Grätzer, G.: General Lattice Theory, 2nd edn. Birkhäuser Verlag (2003)

    Google Scholar 

  19. van de Gronde, J.J., Roerdink, J.B.T.M.: Frames, the Loewner order and eigendecomposition for morphological operators on tensor fields. Pattern Recognit. Lett. 47, 40–49 (2014)

    Article  Google Scholar 

  20. van de Gronde, J.J., Roerdink, J.B.T.M.: Group-Invariant Colour Morphology Based on Frames. IEEE Trans. Image Process. 23(3), 1276–1288 (2014)

    Article  MathSciNet  Google Scholar 

  21. Hanbury, A.G., Serra, J.: Morphological operators on the unit circle. IEEE Trans. Image Process. 10(12), 1842–1850 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  22. Heijmans, H.J.A.M.: Morphological image operators. Academic Press (1994)

    Google Scholar 

  23. Leutola, K., Nieminen, J.: Posets and generalized lattices. Algebra Universalis 16(1), 344–354 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  24. Pasternak, O., Sochen, N., Basser, P.J.: The effect of metric selection on the analysis of diffusion tensor MRI data. NeuroImage 49(3), 2190–2204 (2010)

    Article  Google Scholar 

  25. Peters, R.A.: Mathematical morphology for angle-valued images. Proceedings of the SPIE 3026, 84–94 (1997)

    Article  Google Scholar 

  26. Rachůnek, J.: Semi-ordered groups. Sborník prací Přírodovědecké fakulty University Palackého v Olomouci. Matematika 18(1), 5–20 (1979)

    MATH  Google Scholar 

  27. Serra, J.: Anamorphoses and function lattices. In: Dougherty, E.R., Gader, P.D., Serra, J.C. (eds.) Image Algebra and Morphological Image Processing IV, vol. 2030, pp. 2–11. SPIE Proceedings (1993)

    Google Scholar 

  28. Skala, H.L.: Trellis theory. Algebra Universalis 1(1), 218–233 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  29. Tobar, M.C., Platero, C., González, P.M., Asensio, G.: Mathematical morphology in the HSI colour space. In: Martí, J., Benedí, J.M., Mendonça, A.M., Serrat, J. (eds.) IbPRIA 2007. LNCS, vol. 4478, pp. 467–474. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  30. Zanoguera, F., Meyer, F.: On the implementation of non-separable vector levelings. In: Talbot, H., Beare, R. (eds.) Mathematical Morphology, p. 369. CSIRO Publishing (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasper J. van de Gronde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

van de Gronde, J.J., Roerdink, J.B.T.M. (2015). Sponges for Generalized Morphology. In: Benediktsson, J., Chanussot, J., Najman, L., Talbot, H. (eds) Mathematical Morphology and Its Applications to Signal and Image Processing. ISMM 2015. Lecture Notes in Computer Science(), vol 9082. Springer, Cham. https://doi.org/10.1007/978-3-319-18720-4_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18720-4_30

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18719-8

  • Online ISBN: 978-3-319-18720-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics