Skip to main content

TRP Channels in the Sensation of Heat

  • Chapter
  • First Online:
Book cover TRP Channels in Sensory Transduction

Abstract

Animals must sense temperature in the external environment in order to find ambient temperatures appropriate for different activities, such as hunting or sleeping, and to avoid even brief exposure to damaging extremes of temperature. They must also sense their internal bodily temperature in order to regulate it. Some members of the TRP channel family are activated by thermal stimuli, and are consequently named the thermoTRPs; thermally sensitive ion channels are also found in the potassium and chloride channel families. When thermoTRP channels are expressed in a sensory neuron, channel opening in response to heat leads to depolarization and generation of action potentials. It is still an open question which channels are important for sensation of thermal stimuli in the external environment, and channels involved in the sensation of internal bodily temperature for the purposes of thermoregulation are even less understood. In this chapter we review the properties of thermosensitive ion channels and their roles in thermosensation and thermoregulation, with an emphasis on TRP channels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abriel H et al (2012) TRPM4 channels in the cardiovascular system: physiology, pathophysiology, and pharmacology. Biochem Pharmacol 84(7):873–881

    CAS  PubMed  Google Scholar 

  • Alloui A et al (2006) TREK-1, a K+ channel involved in polymodal pain perception. EMBO J 25(11):2368–2376

    PubMed Central  CAS  PubMed  Google Scholar 

  • Almeida MC et al (2012) Pharmacological blockade of the cold receptor TRPM8 attenuates autonomic and behavioral cold defenses and decreases deep body temperature. J Neurosci 32(6):2086–2099

    PubMed Central  CAS  PubMed  Google Scholar 

  • Beck A et al (2006) Nicotinic acid adenine dinucleotide phosphate and cyclic ADP-ribose regulate TRPM2 channels in T lymphocytes. FASEB J 20(7):962–964

    CAS  PubMed  Google Scholar 

  • Bender FL et al (2005) The temperature-sensitive ion channel TRPV2 is endogenously expressed and functional in the primary sensory cell line F-11. Cell Physiol Biochem 15(1–4):183–194

    CAS  PubMed  Google Scholar 

  • Benfenati V et al (2007) Expression and functional characterization of transient receptor potential vanilloid-related channel 4 (TRPV4) in rat cortical astrocytes. Neuroscience 148(4):876–892

    CAS  PubMed  Google Scholar 

  • Caterina MJ (2007) Transient receptor potential ion channels as participants in thermosensation and thermoregulation. Am J Physiol Regul Integr Comp Physiol 292(1):R64–R76

    CAS  PubMed  Google Scholar 

  • Caterina MJ et al (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389(6653):816–824

    CAS  PubMed  Google Scholar 

  • Caterina MJ et al (1999) A capsaicin-receptor homologue with a high threshold for noxious heat. Nature 398(6726):436–441

    CAS  PubMed  Google Scholar 

  • Caterina MJ et al (2000) Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288(5464):306–313

    CAS  PubMed  Google Scholar 

  • Cesare P, McNaughton P (1996) A novel heat-activated current in nociceptive neurons and its sensitization by bradykinin. Proc Natl Acad Sci U S A 93(26):15435–15439

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chen XM et al (1998) Efferent projection from the preoptic area for the control of non-shivering thermogenesis in rats. J Physiol 512(Pt 3):883–892

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cho H et al (2012) The calcium-activated chloride channel anoctamin 1 acts as a heat sensor in nociceptive neurons. Nat Neurosci 15(7):1015–1021

    CAS  PubMed  Google Scholar 

  • Chung MK et al (2004) 2-aminoethoxydiphenyl borate activates and sensitizes the heat-gated ion channel TRPV3. J Neurosci 24(22):5177–5182

    CAS  PubMed  Google Scholar 

  • Clapham DE (2003) TRP channels as cellular sensors. Nature 426(6966):517–524

    CAS  PubMed  Google Scholar 

  • Clapham DE et al (2005) International Union of Pharmacology. XLIX. Nomenclature and Structure-function relationships of transient receptor potential channels. Pharmacol Rev 57(4):427–450

    CAS  PubMed  Google Scholar 

  • Coste B et al (2010) Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330(6000):55–60

    PubMed Central  CAS  PubMed  Google Scholar 

  • Craig AD (2002) How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev Neurosci 3(8):655–666

    CAS  PubMed  Google Scholar 

  • Damak S et al (2006) Trpm5 null mice respond to bitter, sweet, and umami compounds. Chem Senses 31(3):253–264

    CAS  PubMed  Google Scholar 

  • Du J et al (2009) Modulation of TRPM2 by acidic pH and the underlying mechanisms for pH sensitivity. J Gen Physiol 134(6):471–488

    PubMed Central  CAS  PubMed  Google Scholar 

  • Eberwine J, Bartfai T (2011) Single cell transcriptomics of hypothalamic warm sensitive neurons that control core body temperature and fever response signaling asymmetry and an extension of chemical neuroanatomy. Pharmacol Ther 129(3):241–259

    PubMed Central  CAS  PubMed  Google Scholar 

  • Enyedi P, Czirjak G (2010) Molecular background of leak K+ currents: two-pore domain potassium channels. Physiol Rev 90(2):559–605

    CAS  PubMed  Google Scholar 

  • Erlund I et al (2001) Plasma kinetics and urinary excretion of the flavanones naringenin and hesperetin in humans after ingestion of orange juice and grapefruit juice. J Nutr 131(2):235–241

    CAS  PubMed  Google Scholar 

  • Everaerts W et al (2010) Inhibition of the cation channel TRPV4 improves bladder function in mice and rats with cyclophosphamide-induced cystitis. Proc Natl Acad Sci U S A 107(44):19084–19089

    PubMed Central  CAS  PubMed  Google Scholar 

  • Felgines C et al (2000) Bioavailability of the flavanone naringenin and its glycosides in rats. Am J Physiol Gastrointest Liver Physiol 279(6):G1148–G1154

    CAS  PubMed  Google Scholar 

  • Flouris AD (2011) Functional architecture of behavioural thermoregulation. Eur J Appl Physiol 111(1):1–8

    PubMed  Google Scholar 

  • Garami A et al (2011) Thermoregulatory phenotype of the Trpv1 knockout mouse: thermoeffector dysbalance with hyperkinesis. J Neurosci 31(5):1721–1733

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gavva NR et al (2007) Repeated administration of vanilloid receptor TRPV1 antagonists attenuates hyperthermia elicited by TRPV1 blockade. J Pharmacol Exp Ther 323(1):128–137

    CAS  PubMed  Google Scholar 

  • Gavva NR et al (2008) Pharmacological blockade of the vanilloid receptor TRPV1 elicits marked hyperthermia in humans. Pain 136(1–2):202–210

    CAS  PubMed  Google Scholar 

  • Goldstein SA et al (2005) International Union of Pharmacology. LV. Nomenclature and molecular relationships of two-P potassium channels. Pharmacol Rev 57(4):527–540

    CAS  PubMed  Google Scholar 

  • Griffin JD et al (1996) Cellular mechanisms for neuronal thermosensitivity in the rat hypothalamus. J Physiol 492(Pt 1):231–242

    PubMed Central  CAS  PubMed  Google Scholar 

  • Grimm C et al (2003) Molecular and functional characterization of the melastatin-related cation channel TRPM3. J Biol Chem 278(24):21493–21501

    CAS  PubMed  Google Scholar 

  • Guinamard R et al (2010) Physiological roles of the TRPM4 channel extracted from background currents. Physiology (Bethesda) 25(3):155–164

    CAS  Google Scholar 

  • Guler AD et al (2002) Heat-evoked activation of the ion channel, TRPV4. J Neurosci 22(15):6408–6414

    CAS  PubMed  Google Scholar 

  • Hara Y et al (2002) LTRPC2 Ca2+ -permeable channel activated by changes in redox status confers susceptibility to cell death. Mol Cell 9:163–173

    CAS  PubMed  Google Scholar 

  • Haraguchi K et al (2012) TRPM2 contributes to inflammatory and neuropathic pain through the aggravation of pronociceptive inflammatory responses in mice. J Neurosci 32(11):3931–3941

    CAS  PubMed  Google Scholar 

  • Heiner I et al (2006) Endogenous ADP-ribose enables calcium-regulated cation currents through TRPM2 channels in neutrophil granulocytes. Biochem J 398(2):225–232

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hori A et al (1999) Warming-activated channels of warm-sensitive neurons in rat hypothalamic slices. Neurosci Lett 275(2):93–96

    CAS  PubMed  Google Scholar 

  • Hu HZ et al (2004) 2-aminoethoxydiphenyl borate is a common activator of TRPV1, TRPV2, and TRPV3. J Biol Chem 279(34):35741–35748

    CAS  PubMed  Google Scholar 

  • Huang SM et al (2011) TRPV3 and TRPV4 ion channels are not major contributors to mouse heat sensation. Mol Pain 7:37

    PubMed Central  PubMed  Google Scholar 

  • Iftinca M et al (2006) Temperature dependence of T-type calcium channel gating. Neuroscience 142(4):1031–1042

    CAS  PubMed  Google Scholar 

  • Iida T et al (2005) Attenuated fever response in mice lacking TRPV1. Neurosci Lett 378(1):28–33

    CAS  PubMed  Google Scholar 

  • Jang Y et al (2012) Quantitative analysis of TRP channel genes in mouse organs. Arch Pharm Res 35(10):1823–1830

    CAS  PubMed  Google Scholar 

  • Julius D (2013) TRP channels and pain. Annu Rev Cell Dev Biol 29:355–384

    CAS  PubMed  Google Scholar 

  • Kang D et al (2005) Thermosensitivity of the two-pore domain K+ channels TREK-2 and TRAAK. J Physiol 564(Pt 1):103–116

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kanosue K et al (1994) Hypothalamic network for thermoregulatory vasomotor control. Am J Physiol 267(1 Pt 2):R283–R288

    CAS  PubMed  Google Scholar 

  • Kaske S et al (2007) TRPM5, a taste-signaling transient receptor potential ion-channel, is a ubiquitous signaling component in chemosensory cells. BMC Neurosci 8:49

    PubMed Central  PubMed  Google Scholar 

  • Kobayashi K et al (2005) Distinct expression of TRPM8, TRPA1, and TRPV1 mRNAs in rat primary afferent neurons with adelta/c-fibers and colocalization with trk receptors. J Comp Neurol 493(4):596–606

    CAS  PubMed  Google Scholar 

  • Kobayashi S et al (2006) Point: heat-induced membrane depolarization of hypothalamic neurons: a putative mechanism of central thermosensitivity. Am J Physiol Regul Integr Comp Physiol 290(5):R1479–R1480 discussion R1484

    CAS  PubMed  Google Scholar 

  • Kolisek M et al (2005) Cyclic ADP-ribose and hydrogen peroxide synergize with ADP-ribose in the activation of TRPM2 channels. Mol Cell 18(1):61–69

    CAS  PubMed  Google Scholar 

  • Kowase T et al (2002) Immunohistochemical localization of growth factor-regulated channel (GRC) in human tissues. Endocr J 49(3):349–355

    CAS  PubMed  Google Scholar 

  • Lawson JJ et al (2008) TRPV1 unlike TRPV2 is restricted to a subset of mechanically insensitive cutaneous nociceptors responding to heat. J Pain 9(4):298–308

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lee N et al (2003) Expression and characterization of human transient receptor potential melastatin 3 (hTRPM3). J Biol Chem 278(23):20890–20897

    CAS  PubMed  Google Scholar 

  • Lee H et al (2005) Altered thermal selection behavior in mice lacking transient receptor potential vanilloid 4. J Neurosci 25(5):1304–1310

    CAS  PubMed  Google Scholar 

  • Leffler A et al (2007) A high-threshold heat-activated channel in cultured rat dorsal root ganglion neurons resembles TRPV2 and is blocked by gadolinium. Eur J Neurosci 26(1):12–22

    PubMed  Google Scholar 

  • Lesage F et al (2000) Human TREK2, a 2P domain mechano-sensitive K + channel with multiple regulations by polyunsaturated fatty acids, lysophospholipids, and Gs, Gi, and Gq protein-coupled receptors. J Biol Chem 275(37):28398–28405

    CAS  PubMed  Google Scholar 

  • Liedtke W, Friedman JM (2003) Abnormal osmotic regulation in trpv4-/- mice. Proc Natl Acad Sci U S A 100(23):13698–13703

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liedtke W et al (2000) Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 103(3):525–535

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liman ER (2007) TRPM5 and taste transduction. Handb Exp Pharmacol (179): 287–298

    Google Scholar 

  • Link TM et al (2010) TRPV2 has a pivotal role in macrophage particle binding and phagocytosis. Nat Immunol 11(3):232–239

    CAS  PubMed  Google Scholar 

  • Liu D et al (2005) Extracellular acid block and acid-enhanced inactivation of the Ca2+ -activated cation channel TRPM5 involve residues in the S3-S4 and S5-S6 extracellular domains. J Biol Chem 280(21):20691–20699

    CAS  PubMed  Google Scholar 

  • Lorenzo IM et al (2008) TRPV4 channel participates in receptor-operated calcium entry and ciliary beat frequency regulation in mouse airway epithelial cells. Proc Natl Acad Sci U S A 105(34):12611–12616

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ma YY et al (2008) Effects of cinnamaldehyde on PGE2 release and TRPV4 expression in mouse cerebral microvascular endothelial cells induced by interleukin-1beta. Biol Pharm Bull 31(3):426–430

    CAS  PubMed  Google Scholar 

  • Ma XY et al (2011) External Ba2+ block of the two-pore domain potassium channel TREK-1 defines conformational transition in its selectivity filter. J Biol Chem 286(46):39813–39822

    PubMed Central  CAS  PubMed  Google Scholar 

  • Maingret F et al (2000) TREK-1 is a heat-activated background K(+) channel. EMBO J 19(11):2483–2491

    PubMed Central  CAS  PubMed  Google Scholar 

  • Martinez C, Peña García E (2013) In Galizia CG, Lledo P-M (eds) Thermosensation. Neurosciences—from molecule to behavior: a university textbook. Springer, Berlin, pp 303–319

    Google Scholar 

  • Medhurst AD et al (2001) Distribution analysis of human two pore domain potassium channels in tissues of the central nervous system and periphery. Brain Res Mol Brain Res 86(1–2):101–114

    CAS  PubMed  Google Scholar 

  • Moqrich A et al (2005) Impaired thermosensation in mice lacking TRPV3, a heat and camphor sensor in the skin. Science 307(5714):1468–1472

    CAS  PubMed  Google Scholar 

  • Morrison SF (2011) 2010 Carl Ludwig distinguished lectureship of the APS neural control and autonomic regulation section: central neural pathways for thermoregulatory cold defense. J Appl Physiol 110(5):1137–1149

    PubMed Central  CAS  PubMed  Google Scholar 

  • Muraki K et al (2003) TRPV2 is a component of osmotically sensitive cation channels in murine aortic myocytes. Circ Res 93(9):829–838

    CAS  PubMed  Google Scholar 

  • Nagamine K et al (1998) Molecular cloning of a novel putative Ca2+ channel protein (TRPC7) highly expressed in brain. Genomics 54(1):124–131

    CAS  PubMed  Google Scholar 

  • Nakamura K, Morrison SF (2008a) Preoptic mechanism for cold-defensive responses to skin cooling. J Physiol 586(10):2611–2620

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nakamura K, Morrison SF (2008b) A thermosensory pathway that controls body temperature. Nat Neurosci 11(1):62–71

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nakamura K, Morrison SF (2010) A thermosensory pathway mediating heat-defense responses. Proc Natl Acad Sci U S A 107(19):8848–8853

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nakamura K, Morrison SF (2011) Central efferent pathways for cold-defensive and febrile shivering. J Physiol 589(Pt 14):3641–3658

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nakayama T et al (1961) Single unit activity of anterior hypothalamus during local heating. Science 134(3478):560–561

    CAS  PubMed  Google Scholar 

  • Nakayama T et al (1963) Thermal stimulation of electrical activity of single units of the preoptic region. Am J Physiol Leg Content 204(6):1122–1126

    Google Scholar 

  • Naylor J et al (2010) Pregnenolone sulphate- and cholesterol-regulated TRPM3 channels coupled to vascular smooth muscle secretion and contraction. Circ Res 106(9):1507–1515

    PubMed Central  CAS  PubMed  Google Scholar 

  • Naziroglu M (2011) TRPM2 cation channels, oxidative stress and neurological diseases: where are we now? Neurochem Res 36(3):355–366

    CAS  PubMed  Google Scholar 

  • Naziroglu M et al (2014) Modulation of oxidative stress and Ca(2+) mobilization through TRPM2 channels in rat dorsal root ganglion neuron by hypericum perforatum. Neuroscience 263:27–35

    Google Scholar 

  • Neeper MP et al (2007) Activation properties of heterologously expressed mammalian TRPV2: evidence for species dependence. J Biol Chem 282(21):15894–15902

    CAS  PubMed  Google Scholar 

  • Nilius B et al (2004a) Decavanadate modulates gating of TRPM4 cation channels. J Physiol 560(Pt 3):753–765

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nilius B et al (2004b) Intracellular nucleotides and polyamines inhibit the Ca2+ -activated cation channel TRPM4b. Pflugers Arch 448(1):70–75

    CAS  PubMed  Google Scholar 

  • Noel J et al (2009) The mechano-activated K+ channels TRAAK and TREK-1 control both warm and cold perception. EMBO J 28(9):1308–1318

    PubMed Central  CAS  PubMed  Google Scholar 

  • Oberwinkler J, Phillipp SE (2007) TRPM3. Handb Exp Pharmacol (179): 253–267

    Google Scholar 

  • Owsianik G et al (2006) Permeation and selectivity of TRP channels. Annu Rev Physiol 68:685–717

    CAS  PubMed  Google Scholar 

  • Palmer RK et al (2010) Triphenylphosphine oxide is a potent and selective inhibitor of the transient receptor potential melastatin-5 ion channel. Assay Drug Dev Technol 8(6):703–713

    CAS  PubMed  Google Scholar 

  • Pan Z et al (2008) Dependence of regulatory volume decrease on transient receptor potential vanilloid 4 (TRPV4) expression in human corneal epithelial cells. Cell Calcium 44(4):374–385

    PubMed Central  CAS  PubMed  Google Scholar 

  • Park U (2008) In vivo function of transient receptor potential vanilloid 2 (TRPV2). Ann Arbor, The Johns Hopkins University, 3309822:128

    Google Scholar 

  • Park U et al (2011) TRP vanilloid 2 knock-out mice are susceptible to perinatal lethality but display normal thermal and mechanical nociception. J Neurosci 31(32):11425–11436

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pedemonte N, Galietta LJ (2014) Structure and function of TMEM16 proteins (Anoctamins). Physiol Rev 94(2):419–459

    CAS  PubMed  Google Scholar 

  • Peier AM et al (2002) A heat-sensitive TRP channel expressed in keratinocytes. Science 296(5575):2046–2049

    CAS  PubMed  Google Scholar 

  • Pereira V et al (2014) Role of the TREK2 potassium channel in cold and warm thermosensation and in pain perception. Pain 155(12):2534–2544

    Google Scholar 

  • Perez CA et al (2002) A transient receptor potential channel expressed in taste receptor cells. Nat Neurosci 5(11):1169–1176

    CAS  PubMed  Google Scholar 

  • Perraud AL et al (2001) ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature 411(6837):595–599

    CAS  PubMed  Google Scholar 

  • Pogorzala LA et al (2013) The cellular code for mammalian thermosensation. J Neurosci 33(13):5533–5541

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pollema-Mays SL et al (2013) Expression of background potassium channels in rat DRG is cell-specific and down-regulated in a neuropathic pain model. Mol Cell Neurosci 57:1–9

    CAS  PubMed  Google Scholar 

  • Prawitt D et al (2003) TRPM5 is a transient Ca2+ -activated cation channel responding to rapid changes in [Ca2+]i. Proc Natl Acad Sci U S A 100(25):15166–15171

    PubMed Central  CAS  PubMed  Google Scholar 

  • Qin N et al (2008) TRPV2 is activated by cannabidiol and mediates CGRP release in cultured rat dorsal root ganglion neurons. J Neurosci 28(24):6231–6238

    CAS  PubMed  Google Scholar 

  • Rathner JA et al (2008) Central pathway for spontaneous and prostaglandin E2-evoked cutaneous vasoconstriction. Am J Physiol Regul Integr Comp Physiol 295(1):R343–R354

    PubMed Central  CAS  PubMed  Google Scholar 

  • Romanovsky A et al (2009) The transient receptor potential vanilloid-1 channel in thermoregulation: a thermosensor it is not. Pharmacol Rev 61:228–261

    PubMed Central  CAS  PubMed  Google Scholar 

  • Smith GD et al (2002) TRPV3 is a temperature-sensitive vanilloid receptor-like protein. Nature 418(6894):186–190

    CAS  PubMed  Google Scholar 

  • Smith PL et al (2006) Bisandrographolide from Andrographis paniculata activates TRPV4 channels. J Biol Chem 281(40):29897–29904

    CAS  PubMed  Google Scholar 

  • Starkus JG et al (2010) The calcium-permeable non-selective cation channel TRPM2 is modulated by cellular acidification. J Physiol 588(Pt 8):1227–1240

    PubMed Central  CAS  PubMed  Google Scholar 

  • Straub I et al (2013a) Flavanones that selectively inhibit TRPM3 attenuate thermal nociception in vivo. Mol Pharmacol 84(5):736–750

    CAS  PubMed  Google Scholar 

  • Straub I et al (2013b) Citrus fruit and fabacea secondary metabolites potently and selectively block TRPM3. Br J Pharmacol 168(8):1835–1850

    PubMed Central  CAS  PubMed  Google Scholar 

  • Strotmann R et al (2000) OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nat Cell Biol 2(10):695–702

    CAS  PubMed  Google Scholar 

  • Strotmann R et al (2003) Ca2+ -dependent potentiation of the nonselective cation channel TRPV4 is mediated by a C-terminal calmodulin binding site. J Biol Chem 278(29):26541–26549

    CAS  PubMed  Google Scholar 

  • Szelenyi Z et al (2004) Daily body temperature rhythm and heat tolerance in TRPV1 knockout and capsaicin pretreated mice. Eur J Neurosci 19(5):1421–1424

    CAS  PubMed  Google Scholar 

  • Tajino K et al (2011) Cooling-sensitive TRPM8 is thermostat of skin temperature against cooling. PLoS One 6(3):e17504

    PubMed Central  CAS  PubMed  Google Scholar 

  • Takezawa R et al (2006) A pyrazole derivative potently inhibits lymphocyte Ca2+ influx and cytokine production by facilitating transient receptor potential melastatin 4 channel activity. Mol Pharmacol 69(4):1413–1420

    CAS  PubMed  Google Scholar 

  • Talavera K et al (2005) Heat activation of TRPM5 underlies thermal sensitivity of sweet taste. Nature 438(7070):1022–1025

    CAS  PubMed  Google Scholar 

  • Tamayo N et al (2008) Design and synthesis of peripherally restricted transient receptor potential vanilloid 1 (TRPV1) antagonists. J Med Chem 51(9):2744–2757

    CAS  PubMed  Google Scholar 

  • Thiel G et al (2013) Signal transduction via TRPM3 channels in pancreatic beta-cells. J Mol Endocrinol 50(3):R75–R83

    CAS  PubMed  Google Scholar 

  • Todd AJ (2010) Neuronal circuitry for pain processing in the dorsal horn. Nat Rev Neurosci 11(12):823–836

    PubMed Central  CAS  PubMed  Google Scholar 

  • Togashi K et al (2006) TRPM2 activation by cyclic ADP-ribose at body temperature is involved in insulin secretion. EMBO J 25(9):1804–1815

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tominaga M et al (1998) The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21(3):531–543

    CAS  PubMed  Google Scholar 

  • Uchida K et al (2011) Lack of TRPM2 impaired insulin secretion and glucose metabolisms in mice. Diabetes 60(1):119–126

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ullrich ND et al (2005) Comparison of functional properties of the Ca2+ -activated cation channels TRPM4 and TRPM5 from mice. Cell Calcium 37(3):267–278

    CAS  PubMed  Google Scholar 

  • Vandewauw I et al (2013) Systematic and quantitative mRNA expression analysis of TRP channel genes at the single trigeminal and dorsal root ganglion level in mouse. BMC Neurosci 14:21

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vay L et al (2012) The thermoTRP ion channel family: properties and therapeutic implications. Br J Pharmacol 165(4):787–801

    PubMed Central  CAS  PubMed  Google Scholar 

  • Venkatachalam K, Montell C (2007) TRP channels. Annu Rev Biochem 76:387–417

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vlachova V et al (2003) Functional role of C-terminal cytoplasmic tail of rat vanilloid receptor 1. J Neurosci 23(4):1340–1350

    CAS  PubMed  Google Scholar 

  • Voets T (2012) Quantifying and modeling the temperature-dependent gating of TRP channels. Rev Physiol Biochem Pharmacol 162:91–119

    CAS  PubMed  Google Scholar 

  • Vriens J et al (2011) TRPM3 is a nociceptor channel involved in the detection of noxious heat. Neuron 70(3):482–494

    CAS  PubMed  Google Scholar 

  • Wagner TF et al (2008) Transient receptor potential M3 channels are ionotropic steroid receptors in pancreatic beta cells. Nat Cell Biol 10(12):1421–1430

    CAS  PubMed  Google Scholar 

  • Waldmann R et al (1997) A proton-gated cation channel involved in acid-sensing. Nature 386(6621):173–177

    CAS  PubMed  Google Scholar 

  • Wechselberger M et al (2006) Ionic channels and conductance-based models for hypothalamic neuronal thermosensitivity. Am J Physiol Regul Integr Comp Physiol 291(3):R518–R529

    CAS  PubMed  Google Scholar 

  • Wehage E et al (2002) Activation of the cation channel long transient receptor potential channel 2 (LTRPC2) by hydrogen peroxide. A splice variant reveals a mode of activation independent of ADP-ribose. J Biol Chem 277(26):23150–23156

    CAS  PubMed  Google Scholar 

  • Willette RN et al (2008) Systemic activation of the transient receptor potential vanilloid subtype 4 channel causes endothelial failure and circulatory collapse: Part 2. J Pharmacol Exp Ther 326(2):443–452

    CAS  PubMed  Google Scholar 

  • Woodbury CJ et al (2004) Nociceptors lacking TRPV1 and TRPV2 have normal heat responses. J Neurosci 24(28):6410–6415

    CAS  PubMed  Google Scholar 

  • Xiao B et al (2011) Temperature-dependent STIM1 activation induces Ca(2) + influx and modulates gene expression. Nat Chem Biol 7(6):351–358

    CAS  PubMed  Google Scholar 

  • Xu H et al (2002) TRPV3 is a calcium-permeable temperature-sensitive cation channel. Nature 418(6894):181–186

    CAS  PubMed  Google Scholar 

  • Xu C et al (2006a) Association of the putative susceptibility gene, transient receptor potential protein melastatin type 2, with bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 141B(1):36–43

    CAS  PubMed  Google Scholar 

  • Xu H et al (2006b) Oregano, thyme and clove-derived flavors and skin sensitizers activate specific TRP channels. Nat Neurosci 9(5):628–635

    CAS  PubMed  Google Scholar 

  • Yang YD et al (2008) TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature 455(7217):1210–1215

    CAS  PubMed  Google Scholar 

  • Yoon IS et al (2001) Altered TRPC7 gene expression in bipolar-I disorder. Biol Psychiatry 50(8):620–626

    CAS  PubMed  Google Scholar 

  • Zhang YH et al (1995) Warm and cold signals from the preoptic area: which contribute more to the control of shivering in rats? J Physiol 485(Pt 1):195–202

    CAS  PubMed  Google Scholar 

  • Zhang D et al (2012a) Mast-cell degranulation induced by physical stimuli involves the activation of transient-receptor-potential channel TRPV2. Physiol Res 61(1):113–124

    CAS  PubMed  Google Scholar 

  • Zhang Z et al (2012b) TRPM2 Ca2+ channel regulates energy balance and glucose metabolism. Am J Physiol Endocrinol Metab 302(7):E807–E816

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter A. McNaughton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tan, CH., McNaughton, P. (2015). TRP Channels in the Sensation of Heat. In: Madrid, R., Bacigalupo, J. (eds) TRP Channels in Sensory Transduction. Springer, Cham. https://doi.org/10.1007/978-3-319-18705-1_8

Download citation

Publish with us

Policies and ethics