Skip to main content

Mathematical Modeling of TRPM8 and the Cold Thermoreceptors

  • Chapter
  • First Online:
TRP Channels in Sensory Transduction

Abstract

The role of TRPM8 channel in thermotransduction involves several aspects of complexity that make it difficult to understand intuitively. First, it is activated by several stimuli (cold, voltage, agonists and intracellular signaling) that interact with each other, raising the question of how these interactions occur. Experimental evidence in this type of polymodal channel may be misinterpreted if the consequences of a working hypothesis are not considered carefully. Second, in parallel with the identification of TRPM8 as the main molecular transducer of cold temperatures in cold thermoreceptors of the somatosensory system, a list of other ion channels have been shown to be involved in the activity of cold-sensitive neurons and nerve endings. The variety of firing patterns observed at cold sensitive nerve endings arises from a complex interaction of ion channels that operate on different time scales. Mathematical modeling has been instrumental in understanding these phenomena, showing the consequences of the hypotheses raised. Here we review some of the models that have been proposed in these two areas: the activation of TRPM8 and TRPV1 by voltage and temperature, and the generation of firing patterns of cold thermoreceptors. We finish this chapter with a mathematical model showing how the calcium-dependent adaptation of TRPM8 may account for the response of cold thermoreceptors to rapid changes in temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altomare C, Bucchi A, Camatini E et al (2001) Integrated allosteric model of voltage gating of HCN channels. J Gen Physiol 117:519–532

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bade H, Braun HA, Hensel H (1979) Parameters of the static burst discharge of lingual cold receptors in the cat. Pflugers Arch 382:1–5. doi:10.1007/BF00585897

    Article  CAS  PubMed  Google Scholar 

  • Bautista DM, Siemens J, Glazer JM et al (2007) The menthol receptor TRPM8 is the principal detector of environmental cold. Nature 448:204–208. doi:10.1038/nature05910

    Article  CAS  PubMed  Google Scholar 

  • Brauchi S, Orio P, Latorre R (2004) Clues to understanding cold sensation: thermodynamics and electrophysiological analysis of the cold receptor TRPM8. Proc Natl Acad Sci U S A 101:15494–15499. doi:10.1073/pnas.0406773101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brauchi S, Orta G, Salazar M et al (2006) A hot-sensing cold receptor: C-terminal domain determines thermosensation in transient receptor potential channels. J Neurosci 26:4835–4840. doi:10.1523/JNEUROSCI.5080-05.2006

    Article  CAS  PubMed  Google Scholar 

  • Braun HA, Bade H, Hensel H (1980) Static and dynamic discharge patterns of bursting cold fibers related to hypothetical receptor mechanisms. Pflugers Arch 386:1–9. doi:10.1007/BF00584180

    Article  CAS  PubMed  Google Scholar 

  • Braun HA, Huber MT, Dewald M et al (1998) Computer simulations of neuronal signal transduction: the role of nonlinear dynamics and noise. Int J Bifurc Chaos 8:881–889. doi:10.1142/S0218127498000681

    Article  Google Scholar 

  • Brock JA, Pianova S, Belmonte C (2001) Differences between nerve terminal impulses of polymodal nociceptors and cold sensory receptors of the guinea-pig cornea. J Physiol 533:493–501. doi:10.1111/j.1469-7793.2001.0493a.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chung M-K, Caterina MJ (2007) TRP channel knockout mice lose their cool. Neuron 54:345–347. doi:10.1016/j.neuron.2007.04.025

    Article  CAS  PubMed  Google Scholar 

  • Colburn RW, Lou LM, Stone DJ et al (2007) Attenuated cold sensitivity in TRPM8 null mice. Neuron 54:379–386. doi:10.1016/j.neuron.2007.04.017

    Article  CAS  PubMed  Google Scholar 

  • Cole KS, Moore JW (1960) Potassium ion current in the squid giant axon: dynamic characteristic. Biophys J 1:1–14

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Daniels RL, Takashima Y, McKemy DD (2009) Activity of the neuronal cold sensor TRPM8 is regulated by phospholipase C via the phospholipid phosphoinositol 4,5-bisphosphate. J Biol Chem 284:1570–1582. doi:10.1074/jbc.M807270200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dhaka A, Murray AN, Mathur J et al (2007) TRPM8 is required for cold sensation in mice. Neuron 54:371–378. doi:10.1016/j.neuron.2007.02.024

    Article  CAS  PubMed  Google Scholar 

  • Dykes RW (1975) Coding of steady and transient temperatures by cutaneous “cold” fibers serving the hand of monkeys. Brain Res 98:485–500. doi:10.1016/0006-8993(75)90368-6

    Article  CAS  PubMed  Google Scholar 

  • Hensel H, Wurster RD (1970) Static properties of cold receptors in nasal area of cats. J Neurophysiol 33:271–275

    CAS  PubMed  Google Scholar 

  • Hensel H, Zotterman Y (1951) The response of the cold receptors to constant cooling. Acta Physiol Scand 22:96–105. doi:10.1111/j.1748-1716.1951.tb00758.x

    Article  CAS  PubMed  Google Scholar 

  • Herzog RI, Cummins TR, Waxman SG (2001) Persistent TTX-resistant Na+ current affects resting potential and response to depolarization in simulated spinal sensory neurons. J Neurophysiol 86:1351–1364

    CAS  PubMed  Google Scholar 

  • Hines ML, Carnevale NT (2001) NEURON: a tool for neuroscientists. Neuroscientist 7:123–135

    Article  CAS  PubMed  Google Scholar 

  • Horrigan FT, Aldrich RW (2002) Coupling between voltage sensor activation, Ca2+ binding and channel opening in large conductance (BK) potassium channels. J Gen Physiol 120:267–305

    Article  CAS  PubMed  Google Scholar 

  • Horrigan FT, Cui J, Aldrich RW (1999) Allosteric voltage gating of potassium channels I. Mslo ionic currents in the absence of Ca(2+). J Gen Physiol 114:277–304

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huber M, Krieg J, Dewald M et al (2000) Stochastic encoding in sensory neurons: impulse patterns of mammalian cold receptors. Chaos Solitons Fractals 11:1895–1903. doi:10.1016/S0960-0779(99)00126-5

    Article  Google Scholar 

  • Iggo A (1969) Cutaneous thermoreceptors in primates and sub-primates. J Physiol 200:403–430

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kang D, Choe C, Kim D (2005) Thermosensitivity of the two-pore domain K+ channels TREK-2 and TRAAK. J Physiol 564:103–116. doi:10.1113/jphysiol.2004.081059

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Latorre R, Vargas G, Orta G, Brauchi S (2006) Voltage and temperature gating of thermoTRP channels. 287–302

    Google Scholar 

  • Latorre R, Brauchi S, Orta G et al (2007) ThermoTRP channels as modular proteins with allosteric gating. Cell Calcium 42:427–438. doi:10.1016/j.ceca.2007.04.004

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Hui K, Qin F (2003) Thermodynamics of heat activation of single capsaicin ion channels VR1. Biophys J 85:2988–3006. doi:10.1016/S0006-3495(03)74719-5

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Longtin A, Hinzer K (1996) Encoding with bursting, subthreshold oscillations, and noise in mammalian cold receptors. Neural Comput 8:215–255

    Article  CAS  PubMed  Google Scholar 

  • Lu Z (2002) Coupling between Voltage sensors and activation gate in voltage-gated K+ channels. J Gen Physiol 120:663–676. doi:10.1085/jgp.20028696

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Madrid R, de la Peña E, Donovan-Rodriguez T et al (2009) Variable threshold of trigeminal cold-thermosensitive neurons is determined by a balance between TRPM8 and Kv1 potassium channels. J Neurosci 29:3120–3131. doi:10.1523/JNEUROSCI.4778-08.2009

    Article  CAS  PubMed  Google Scholar 

  • Maingret F, Lauritzen I, Patel AJ et al (2000) TREK-1 is a heat-activated background K(+) channel. EMBO J 19:2483–2491. doi:10.1093/emboj/19.11.2483

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McKemy DD, Neuhausser WM, Julius D (2002) Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416:52–58. doi:10.1038/nature719

    Article  CAS  PubMed  Google Scholar 

  • Matta JA, Ahern GP (2007) Voltage is a partial activator of rat thermosensitive TRP channels. J Physiol 585:469–482. doi:10.1113/jphysiol.2007.144287

    Google Scholar 

  • Noël J, Zimmermann K, Busserolles J et al (2009) The mechano-activated K+ channels TRAAK and TREK-1 control both warm and cold perception. EMBO J 28:1308–1318. doi:10.1038/emboj.2009.57

    Article  PubMed Central  PubMed  Google Scholar 

  • Orio P, Madrid R, de la Peña E et al (2009) Characteristics and physiological role of hyperpolarization activated currents in mouse cold thermoreceptors. J Physiol 587:1961–1976. doi:10.1113/jphysiol.2008.165738

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Orio P, Parra A, Madrid R et al (2012) Role of Ih in the firing pattern of mammalian cold thermoreceptor endings. J Neurophysiol 108:3009–3023. doi:10.1152/jn.01033.2011

    Article  CAS  PubMed  Google Scholar 

  • Peier AM, Moqrich A, Hergarden AC et al (2002) A TRP channel that senses cold stimuli and menthol. Cell 108:705–715

    Article  CAS  PubMed  Google Scholar 

  • Plant RE, Kim M (1976) Mathematical description of a bursting pacemaker neuron by a modification of the Hodgkin-Huxley equations. Biophys J 16:227–244. doi:10.1016/S0006-3495(76)85683-4

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Raddatz N, Castillo JP, Gonzalez C et al (2014) Temperature and voltage coupling to channel opening in transient receptor potential melastatin 8 (TRPM8). J Biol Chem. doi:10.1074/jbc.M114.612713

    Google Scholar 

  • Reid G, Flonta M (2001) Cold transduction by inhibition of a background potassium conductance in rat primary sensory neurones. Neurosci Lett 297:171–174

    Article  CAS  PubMed  Google Scholar 

  • Reid G, Babes A, Pluteanu F (2002) A cold- and menthol-activated current in rat dorsal root ganglion neurones: properties and role in cold transduction. J Physiol 545:595–614. doi:10.1113/jphysiol.2002.024331

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rohács T, Lopes CMB, Michailidis I, Logothetis DE (2005) PI(4,5)P2 regulates the activation and desensitization of TRPM8 channels through the TRP domain. Nat Neurosci 8:626–634. doi:10.1038/nn1451

    Article  PubMed  Google Scholar 

  • Sarria I, Ling J, Zhu MX, Gu JG (2011) TRPM8 acute desensitization is mediated by calmodulin and requires PIP(2): distinction from tachyphylaxis. J Neurophysiol 106:3056–3066. doi:10.1152/jn.00544.2011

    Article  CAS  PubMed  Google Scholar 

  • Schäfer K, Braun HA, Hensel H (1982) Static and dynamic activity of cold receptors at various calcium levels. J Neurophysiol 47:1017–1028

    PubMed  Google Scholar 

  • Viana F, de la Peña E, Belmonte C (2002) Specificity of cold thermotransduction is determined by differential ionic channel expression. Nat Neurosci 5:254–260. doi:10.1038/nn809

    Article  CAS  PubMed  Google Scholar 

  • Voets T, Droogmans G, Wissenbach U et al (2004) The principle of temperature-dependent gating in cold- and heat-sensitive TRP channels. Nature 430:748–754. doi:10.1038/nature02732

    Article  CAS  PubMed  Google Scholar 

  • Voets T, Owsianik G, Janssens A et al (2007) TRPM8 voltage sensor mutants reveal a mechanism for integrating thermal and chemical stimuli. Nat Chem Biol 3:174–182. doi:10.1038/nchembio862

    Article  CAS  PubMed  Google Scholar 

  • Zakharian E, Cao C, Rohacs T (2010) Gating of transient receptor potential melastatin 8 (TRPM8) channels activated by cold and chemical agonists in planar lipid bilayers. J Neurosci 30:12526–12534. doi:10.1523/JNEUROSCI.3189-10.2010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The work of the authors is supported by Fondecyt Grant 1130862, ACT-1113 and ACT-1104 (CONICYT, Chile) to PO. The Centro Interdisciplinario de Neurociencia de Valparaíso is a Millenium Science Institute supported by P09-022-F funds, Ministerio de Economía, Chile.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricio Orio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Olivares, E., Orio, P. (2015). Mathematical Modeling of TRPM8 and the Cold Thermoreceptors. In: Madrid, R., Bacigalupo, J. (eds) TRP Channels in Sensory Transduction. Springer, Cham. https://doi.org/10.1007/978-3-319-18705-1_10

Download citation

Publish with us

Policies and ethics